Prof. Haiman

Math 1A—Calculus

Final Examination

Name _____

Student ID	

Discussion Section (Time and GSI's name) _____

Instructions:

- Do not look at the exam questions before the start of the exam is announced.
- Write your name on each page in case they get separated.
- Write answers in the space provided and turn in only the exam paper. Show enough work so that we can see how you arrived at your answers.
- You may use one sheet of notes. No other notes, books or calculators allowed.
- The exam has 3 pages (both sides) and 20 questions. All questions have equal value.

Grading use only		
1	11	
2	12	
3	13	
4	14	
5	15	
6	16	
7	17	
8	18	
9	19	
10	20	
Tot	Total:	

1. Simplify $x^{1/\ln x}$.

2. If f(x) is continuous on [0,2], and f(0) = 1, f(1) = 2, f(2) = 0, show that f is not one-to-one.

3. Find the equation of the tangent line to $x^3 + y^3 = 9$ at (2, 1).

4. Evaluate the limit (as a number or an infinite limit):

 $\lim_{x \to \pi/2} \frac{1 - \sin x}{\cos^2 x}$

5. Evaluate the limit (as a number or an infinite limit):

$$\lim_{x \to +\infty} (1 + 2/x)^x$$

6. Find c such that the line y = x + c is a slant asymptote to the curve $y = x^2/(x+5)$.

7. Find $(d/dx)^{17}(e^x + e^{-x})$.

8. If X and Y are functions of t related by $Y = e^{XY}$, find X' when Y = 1 and Y' = 3.

9. Find the point on the line x + 2y = 3 closest to the origin.

10. Find all local minima and maxima of the function $f(x) = x^2 e^{-x}$, and the intervals where f is increasing or decreasing.

11. Show that the equation $x^3 - 3x + 3 = 0$ has exactly one real root.

12. Using Newton's method to find an approximate solution to the equation $x^3 = 2$, starting with first approximation $x_1 = 1$, find the next approximation.

13. Find f(x) such that $f''(x) = 1 + \sin x$, f(0) = 0, and f'(0) = 0.

14. Show that $\int_0^1 e^{-x^2} dx \le (1 + e^{-1/4})/2.$

15. Differentiate the function $F(x) = \int_1^{1/x} \sin^{-1}(t) dt$

16. Evaluate the integral $\int_{-1}^{2} |x^3| dx$.

17. Evaluate the integral $\int_1^e \sqrt{\ln x} / x \, dx$.

18. Find the area of the region enclosed by the line x = 1 and the curves $8y = x^2$ and xy = 1.

19. Find the volume of the solid of rotation about the y-axis of the region in the first quadrant enclosed by the y-axis, the line y = x + 1, and the curve $y = 2x^2$.

20. For the function f(x) = 1/x, find the point c in the interval (1,3) such that f(c) is equal to the average value of f on the interval [1,3].