Final Examination Solutions

1. Simplify $x^{1 / \ln x}$.

$$
x^{1 / \ln x}=e^{\ln x / \ln x}=e .
$$

2. If $f(x)$ is continuous on $[0,2]$, and $f(0)=1, f(1)=2, f(2)=0$, show that f is not one-to-one.

Pick a number between 1 and 2, say $3 / 2$. By the Intermediate Value Theorem we must have $f(x)=3 / 2$ for some $x \in(0,1)$ and also for some $x \in(1,2)$, so f is not one-to-one.
3. Find the equation of the tangent line to $x^{3}+y^{3}=9$ at $(2,1)$.

Differentiate to get $3 x^{2}+3 y^{2} y^{\prime}=0$. At $(2,1)$ this gives $y^{\prime}=-4$. The tangent line is therefore $y=-4(x-2)+1=-4 x+9$.
4. Evaluate the limit (as a number or an infinite limit):

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos ^{2} x}
$$

This has the " $0 / 0$ " form. L'Hospital gives

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos ^{2} x}=\lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-2 \cos x \sin x}=\lim _{x \rightarrow \pi / 2} \frac{1}{2 \sin x}=1 / 2 .
$$

5. Evaluate the limit (as a number or an infinite limit):

$$
\lim _{x \rightarrow+\infty}(1+2 / x)^{x}
$$

Observe that $(1+2 / x)^{x}=e^{x \ln (1+2 / x)}$. Now

$$
\lim _{x \rightarrow \infty} x \ln (1+2 / x)=\lim _{x \rightarrow \infty} \ln (1+2 / x) /(1 / x)
$$

The last expression has " $0 / 0$ " form, and is equal by L'Hospital's rule to

$$
\lim _{x \rightarrow \infty} \frac{-2 /\left(x^{2}(1+2 / x)\right)}{-1 / x^{2}}=\lim _{x \rightarrow \infty} 2 /(1+2 / x)=2 .
$$

Therefore, $\lim _{x \rightarrow+\infty}(1+2 / x)^{x}=e^{2}$.
6. Find c such that the line $y=x+c$ is a slant asymptote to the curve $y=x^{2} /(x+5)$.

The required c is given by the limit (since it exists)

$$
c=\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{x+5}-x\right)=\lim _{x \rightarrow \infty} \frac{x^{2}-\left(x^{2}+5 x\right)}{x+5}=\lim _{x \rightarrow \infty} \frac{-5 x}{x+5}=-5 .
$$

7. Find $(d / d x)^{17}\left(e^{x}+e^{-x}\right)$.

The higher derivatives alternate between $e^{x}+e^{-x}$ and $e^{x}-e^{-x}$. Since 17 is odd, $(d / d x)^{17}\left(e^{x}+e^{-x}\right)=e^{x}-e^{-x}$.
8. If X and Y are functions of t related by $Y=e^{X Y}$, find X^{\prime} when $Y=1$ and $Y^{\prime}=3$.

Differentiate to get $Y^{\prime}=e^{X Y}\left(X^{\prime} Y+X Y^{\prime}\right)$. When $Y=1$, we have $1=e^{1 X}$, so $X=0$. Substitute $Y=1, Y^{\prime}=3, X=0$ into $Y^{\prime}=e^{X Y}\left(X^{\prime} Y+X Y^{\prime}\right)$ to get $X^{\prime}=3$.
9. Find the point on the line $x+2 y=3$ closest to the origin.

It's easiest to minimize the square of the distance from the origin, which is $x^{2}+y^{2}$. Use the equation $x+2 y=3$ to express this in terms of y as $(3-2 y)^{2}+y^{2}=5 y^{2}-12 y+9$. Set the derivative to zero to find the minimum at $10 y-12=0, y=6 / 5, x=3-12 / 5=3 / 5$. So the closest point is $(3 / 5,6 / 5)$.
10. Find all local minima and maxima of the function $f(x)=x^{2} e^{-x}$, and the intervals where f is increasing or decreasing.

Differentiate to get $f^{\prime}(x)=x(2-x) e^{-x}$. Therefore $f(x)$ is decreasing on $(-\infty, 0]$ and $[2, \infty)$, and increasing on $[0,2]$ with a local (and absolute) minimum at $x=0, f(0)=0$, and a local (but not absolute) maximum at $x=2, f(2)=4 e^{-2}$.
11. Show that the equation $x^{3}-3 x+3=0$ has exactly one real root.

Set $f(x)=x^{3}-3 x+3$. Then $f^{\prime}(x)=3 x^{2}-3$. Therefore $f(x)$ is decreasing on $[-1,1]$ and increasing on $[1, \infty)$, hence $f(1)=1$ is a minimum on $[-1, \infty)$. This shows that there is no root in $[-1, \infty)$. Furthermore, $f(x)$ is increasing on $(-\infty,-1]$, and therefore has at most one root. Since $f(-1)=5>0$ and (for instance) $f(-3)=-15<0$, there is a root in the interval $(-3,-1)$.
12. Using Newton's method to find an approximate solution to the equation $x^{3}=2$, starting with first approximation $x_{1}=1$, find the next approximation.

We are finding a zero of $f(x)=x^{3}-2$. Its derivative is $f^{\prime}(x)=3 x^{2}$. The Newton step is $x_{2}=x_{1}-f\left(x_{1}\right) / f^{\prime}\left(x_{1}\right)=1-(-1) / 3=4 / 3$.
13. Find $f(x)$ such that $f^{\prime \prime}(x)=1+\sin x, f(0)=0$, and $f^{\prime}(0)=0$.

Antidifferentiate once to get $f^{\prime}(x)=x-\cos x+C$. Use $f^{\prime}(0)=0$ to see that $C=1$. Antidifferentiate again to get $f(x)=x^{2} / 2+x-\sin x+D$. Use $f(0)=0$ to see that $D=0$, so $f(x)=x^{2} / 2+x-\sin x$.
14. Show that $\int_{0}^{1} e^{-x^{2}} d x \leq\left(1+e^{-1 / 4}\right) / 2$.

$$
\int_{0}^{1} e^{-x^{2}} d x=\int_{0}^{1 / 2} e^{-x^{2}} d x+\int_{1 / 2}^{1} e^{-x^{2}} d x
$$

Since $e^{-x^{2}}$ is a decreasing function on $[0,1]$, the maximum value of the integrand occurs at the left limit of integration in each integral, giving

$$
\int_{0}^{1 / 2} e^{-x^{2}} d x+\int_{1 / 2}^{1} e^{-x^{2}} d x \leq e^{0} / 2+e^{-1 / 4} / 2=\left(1+e^{-1 / 4}\right) / 2
$$

15. Differentiate the function $F(x)=\int_{1}^{1 / x} \sin ^{-1}(t) d t$

We have $F(x)=G(1 / x)$ where $G^{\prime}(x)=\sin ^{-1}(x)$ by the Fundamental Theorem of Calculus. By the Chain Rule,

$$
F^{\prime}(x)=G^{\prime}(1 / x)\left(-1 / x^{2}\right)=-\frac{\sin ^{-1}(1 / x)}{x^{2}}
$$

16. Evaluate the integral $\int_{-1}^{2}\left|x^{3}\right| d x$.

Note that $x^{3} \leq 0$ on $[-1,0]$ and $x^{3} \geq 0$ on $[0,2]$. Therefore

$$
\left.\left.\int_{-1}^{2}\left|x^{3}\right| d x=\int_{-1}^{0}-x^{3} d x+\int_{0}^{2} x^{3} d x=-\frac{x^{4}}{4}\right]_{-1}^{0}+\frac{x^{4}}{4}\right]_{0}^{2}=\frac{1}{4}+4=\frac{17}{4}
$$

17. Evaluate the integral $\int_{1}^{e} \sqrt{\ln x} / x d x$.

Let $u=\ln x$ to get

$$
\left.\int_{0}^{1} \sqrt{u} d u=\frac{2}{3} u^{3 / 2}\right]_{0}^{1}=\frac{2}{3}
$$

18. Find the area of the region enclosed by the line $x=1$ and the curves $8 y=x^{2}$ and $x y=1$.

Solve $8 y=x^{2}$ and $x y=1$ together to locate the right endpoint of the region at $(2,1 / 2)$. The area is given by

$$
\left.\int_{1}^{2} \frac{1}{x}-\frac{x^{2}}{8} d x=\ln x-\frac{x^{3}}{24}\right]_{1}^{2}=\ln 2-\frac{7}{24}
$$

19. Find the volume of the solid of rotation about the y-axis of the region in the first quadrant enclosed by the y-axis, the line $y=x+1$, and the curve $y=2 x^{2}$.

This is most easily done using cylindrical shells. The two curves cross at $(1,2)$, so the volume is

$$
2 \pi \int_{0}^{1}\left(x+1-2 x^{2}\right) x d x=2 \pi\left[\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{2}\right]_{0}^{1}=\frac{2 \pi}{3}
$$

To calculate the same thing using slices, you have to do two integrals, one for y from 0 to 1 and another for y from 1 to 2 .
20. For the function $f(x)=1 / x$, find the point c in the interval $(1,3)$ such that $f(c)$ is equal to the average value of f on the interval $[1,3]$.

The average value is

$$
f_{\mathrm{av}}=\frac{1}{2} \int_{1}^{3} \frac{d x}{x}=\frac{\ln 3}{2} .
$$

The required c satisfies $f(c)=1 / c=f_{\text {av }}$, therefore $c=2 /(\ln 3)$.

