Prof. Haiman

Math 1A—Calculus

Fall, 2006

Quiz 7 solutions—version A

Name _____

Student ID Number _____

1. Find the linear function of x which best approximates $\sqrt[3]{x}$ for x close to 8, and use it to estimate $\sqrt[3]{7}$.

Taking $f(x) = \sqrt[3]{x} = x^{1/3}$, we have $f'(x) = (1/3)x^{-2/3}$, f(8) = 2, f'(8) = 1/12. The linear approximation is

$$y = 2 + \frac{x - 8}{12}.$$

This gives the estimate $\sqrt[3]{7} \sim 23/12$ (by the way, to 4 decimal places, $\sqrt[3]{7} = 1.9129...$, compared to 23/12 = 1.9166...).

2. Find the maximum and minimum values of the function $f(x) = xe^{-x}$ on the interval [0, 2].

The derivative is $f'(x) = (x - 1)e^{-x}$, so x = 1 is a critical point. Evaluating at the endpoints and the critical point,

$$f(0) = 0$$

$$f(1) = 1/e$$

$$f(2) = 2/e^{2}$$

Since e > 2, we see that $1/e > 2/e^2$. Therefore the maximum is f(1) = 1/e, and the minimum is f(0) = 0.