1. Differentiate the function
\[y = \frac{(x + 1)\sqrt{x + 2}}{\sqrt{x + 3}}. \]

2. Evaluate the limit if it exists (possibly as an infinite limit).
 (a) \[\lim_{x \to 1^+} \frac{x}{1 - x} \]
 (b) \[\lim_{x \to 1^-} \frac{x}{1 - x} \]
 (c) \[\lim_{x \to 1} \frac{x}{1 - x} \]

3. Find all points \(P \) on the curve \(y = x^2 + 1 \) with the property that the tangent line at \(P \) passes through the origin.

4. Use a linear approximation to estimate \(\sqrt{37} \).

5. If \(\sin(y - x) = y + x \), express \(dy/dx \) in terms of \(x \) and \(y \).

6. Find the constant \(a \) for which \(f(x) = x^3 + ax^2 \) has an inflection point at \(x = 1 \). For this value of \(a \), find the intervals of concavity of \(f(x) \).

7. Use Newton’s method to find the root of \(x^4 + x - 4 = 0 \) in the interval \([1, 2]\), correct to 6 decimal places.

8. Find the points on the parabola \(y = x^2 \) closest to \((0, 1)\).

9. Find the limit.
 \[\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) \]

10. Evaluate the integral.
 \[\int_1^2 x\sqrt{x - 1} \, dx \]

11. Find the area enclosed by the lines \(x = 0, \ y = 1 \) and the curve \(y = \sqrt{x} \).

12. Evaluate the integral.
 \[\int_0^{\pi/2} \left| \cos x - \frac{1}{2} \right| \, dx. \]
13. Differentiate the function

\[f(x) = \int_x^{2x} \frac{e^t}{t} dt. \]

14. Find the most general function \(f(x) \) for which \(f''(x) = \cos x \).

15. Find an interval \([0, c]\) on which the average value of the function \(f(x) = x^2 + 2 \) is equal to 5.

16. Set up an integral for the volume of the solid obtained by rotating the region enclosed by the \(x \) axis, the line \(x = 2 \), and the curve \(y = \ln x \) about the \(y \) axis, using

(a) the method of slices;

(b) the method of cylindrical shells.

Evaluate one of these integrals to find the volume.

17. Find the volume of a pyramid with a square base of length 2 on each side, and height 3.

18. Evaluate the limit by expressing it as an integral.

\[\lim_{{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \frac{i^2}{n^2}. \]