Quiz 8 Solution (Version A)

1. Find the limit

\[
\lim_{x \to 1} (\ln x) (\tan \frac{\pi x}{2})
\]

Now we have a 0/0 type limit and can apply L’Hospital’s rule to get

\[
\lim_{x \to 1} \frac{1/x}{-(\pi/2) \csc^2 \pi x/2} = -2/\pi.
\]

2. A rectangular box has height \(h \), width \(w \) and depth \(d \). Find the largest possible volume for the box if it is required that \(w = 2h \), and the total perimeter \(h + w + d \) is 3 m.

The constraints imply \(3h + d = 3 \), so \(d = 3 - 3h \). The volume is

\[
V = hwd = h(2h)(3 - 3h) = 6h^2 - 6h^3.
\]

We are to maximize this on the interval \(0 \leq h \leq 1 \).

\[
dV/dt = 12h - 18h^2 = 6h(2 - 3h)
\]

giving a critical point at \(h = 2/3 \), in addition to the endpoints \(h = 0, 1 \) of the domain. We have \(V = 0 \) at the endpoints, so the absolute maximum is \(V = (2/3)(4/3)(1) = 8/9 \) m\(^3\), with \(h = 2/3, w = 4/3, d = 1 \).