
Notes on exponential generating functions (continued).

9. The exponential generating function for rooted labelled trees

In this section we consider the problem of enumerating unordered rooted trees on a set of n
labelled vertices. This is a typical structure enumeration problem which we can attack using
exponential generating functions. We have already seen how to enumerate binary trees using the
product principle. For unordered trees we typically need the composition principle.

Let t(n) denote the number of unordered rooted labeled trees on an n-element set, and let

T (x) =
∞∑

n=0

t(n)
xn

n!

be the corresponding exponential generating function. It will turn out that things work best if we
agree that t(0) = 0, that is, we do not count the empty tree as a rooted tree.

We begin as we did for binary trees, by viewing a tree as a product structure, in which one vertex
is chosen to be the root, and the rest are arranged into a collection of subtrees whose roots are the
children of the main root. In other words, the vertices other than the one chosen as the root are
given the structure of a “forest” of rooted trees. Next we observe that a forest is really a composite
structure, consisting of a partition of the vertices, with a structure of rooted tree on the vertices in
each block, and a trivial structure on the set of blocks.

By the composition principle, the exponential generating function enumerating forests is equal
to

eT (x).

Note that our agreement not to count the empty tree is convenient here, since it makes T (0) = 0,
as we require when applying the composition principle. Now the product structure describing a
root and a forest is (one-element set)×(forest), so by the product principle we have

T (x) = xeT (x).

This identity determines T (x). To actually compute any fixed number of terms, one can use the
method of successive approximation. Begin with

T (x) = x + · · · ,
which is correct through the order x term. Substituting this into the right hand side in the above
identity, we will get eT (x) correct through the order x term, and hence we will get xeT (x) correct
though the order x2 term. In this way we find

T (x) = xe(x+··· ) = x(1 + x + · · · ) = x + x2 + · · · .
Repeating this, we get

T (x) = xe(x+x2+··· ) = xexex2 · · ·
= x(1 + x + x2/2 + · · · )(1 + x2 + · · · )
= x(1 + x + 3x2/2 + · · · )
= x + x2 + 3x3/2 + · · · .

This can be continued indefinitely, the next step giving

T (x) = x + 2x2/2! + 9x3/3! + 64x4/4! + · · · .
This agrees with what we knew from Cayley’s tree enumerator or the matrix-tree theorem to be
the answer, namely t(n) = nn−1. Note however that the exponential generating function approach

1



allows us to arrive at the identity T (x) = xeT (x) in a direct fashion, whereas to get the Cayley or
matrix-tree generating functions, we first needed a kind of amazing guess to discover the answer,
and then a tricky argument to prove it.

10. Lagrange inversion

From the computation of T (x) above we might readily guess the formula t(n) = nn−1 if we hadn’t
known it before, but it is still not apparent why the formal power series

T (x) =
∞∑

n=1

nn−1 xn

n!

should be the solution of the equation

T (x) = xeT (x).

Here I will briefly discuss one way in which this result can be obtained. We can rewrite the identity
for T (x) as

T (x)e−T (x) = x,

which says that T (x) is the inverse function of xe−x, in the same way that arcsin x is the inverse
function of sin x, or ex is the inverse function of log x. There is a classical formula of Lagrange to
find the coefficients of the Taylor series of an inverse function. Since we are concerned here with
formal series, we only allow series with zero constant term, as these are the only formal series for
which it makes sense to speak of a formal inverse function. Then the inversion formula of Lagrange
can be written as follows.

Theorem 1. Let xG(x) be the functional composition inverse of xF (x). Then

[xn]G(x) = [xn]
F (x)−n−1

n + 1
,

where the symbol [xn] denotes the coefficient of xn in the expression that follows it.

Note that the formula gives the xn coefficient of G(x) as the xn coefficient of another series which
depends on n. It does not give a closed form for G(x), which would be impossible in general.

At this point, we will not discuss the proof of Lagrange’s formula, but take it for granted and apply
it in our situation. Since T (x) is the functional composition inverse of xe−x, we take F (x) = e−x.
Then G(x) = T (x)/x, so the coefficient of xn in G(x) is actually the coefficient of xn+1 in T (x),
which is t(n + 1)/(n + 1)!. According to the formula, this is given by

t(n + 1)/(n + 1)! = [xn]
e(n+1)x

n + 1
=

(n + 1)n

n!(n + 1)
.

Hence

t(n + 1) = (n + 1)n,

or, replacing n with n− 1,

t(n) = nn−1.



11. Variations on tree enumeration

We can use the method of the previous section to count rooted labeled trees with various kinds
of additional structure on the children of each vertex. We will always view a tree as a product
structure (one-element root)×(forest), and a forest as a composite structure. In general the outer
structure on the trees in the forest may be non-trivial, depending on what type of trees we want
to count.

Example: Unordered rooted labeled binary trees. These are unordered trees in which every vertex
has at most two children. Thus each forest is to be a forest of at most two trees. The generating
function for the trivial structure of “set with at most two elements” is 1 + x + x2/2, so

U(x) = x(1 + U(x) + U(x)2/2),

where U(x) is the generating function for unordered rooted labeled binary trees. Note that this is
a quadratic equation which can be solved exactly for U(x).

Example: Unordered rooted labeled strictly binary trees. This means each vertex has exactly
two children or none. For the generating function we get

V (x) = x(1 + V (x)2/2).

Example (just to show the lengths to which you can take this method): Unordered rooted labeled
trees in which every vertex either has only leaves or no leaves as children. As before, we analyze such
a tree as a product structure consisting of a root and a forest. The forest structure for this one is a
bit tricky. Either the forest is all leaves, that is, it is a forest of one-vertex trees, or else it is a forest
of trees of our same type again, all of which have at least two vertices. Let Z(x) be the exponential
generating function enumerating our trees. By definition we don’t count the empty tree, and there
is one tree on a one-element set, contributing a term x to Z(x). The remaining terms of Z(x)
enumerate the trees with more than one element, so their generating function is Z(x)− x. By the
addition principle and the composition principle, the generating function enumerating forests of
the type we want is ex + eZ(x)−x. Here the term ex enumerates the forests consisting of one-vertex
trees (a forest of one-vertex trees is just a trivial structure) and the other term enumerates the
forests of trees with more than one vertex. The identity giving Z(x) is then

Z(x) = x(ex + eZ(x)−x).

12. Trees, permutations, and functional digraphs

Let A be a finite set and f : A → A be any function from A to itself—not necessarily a permu-
tation. We can form a directed graph whose vertices are the elements of A, with an edge directed
from x to f(x) for each element x ∈ A. This digraph will have the property that every vertex has
out-degree equal to 1. Conversely, any such digraph is the graph of a unique function f , namely
the function mapping each vertex x to the vertex at the other end of the unique edge directed out
of x. Note that loops are allowed, since we may have elements with f(x) = x. A digraph in which
every vertex has out-degree 1 is called a functional digraph.

In particular, if A has n elements, then there are nn functions from A to itself, and hence
nn functional digraphs with vertex set A. If we regard these as structures on A, then they are
enumerated by the exponential generating function

F (x) =
∑

n

nn xn

n!
.



This suggests a possible way of proving that the number of unordered rooted labelled trees on
n vertices is given by t(n) = nn−1, purely combinatorially, without using the Lagrange inversion
formula. Namely, the identity

T (x) =
∞∑

n=1

nn−1 xn

n!
,

which we would like to prove, is equivalent to

(1) xT ′(x) =
∞∑

n=1

nn xn

n!
= F (x)− 1.

Here we subtracted 1 on the right hand side so as not to count the empty functional digraph. We
must do this because the constant term on the left-hand side is zero.

We will use exponential generating function principles to find an identity satisfied by F (x), and
use this to prove that F (x) = xT ′(x).

To get started, let us consider two special types of functional digraphs. The first type is the
digraph of a permutation. Here the graph simply displays the cycle structure of the permutation,
with the edges directed around each cycle, as indicated in the example shown here.

The second special type of functional digraph to consider is a rooted tree, with a loop on the root,
and the rest of the edges directed toward the root. Then f is the function mapping each non-root
vertex in the tree to its parent, and the root to itself.

Trees and permutations represent extreme cases of functional digraphs. At one extreme, in a
permutation digraph, every vertex belongs to a cycle. At the other, in a tree, only one vertex, the
root, belongs to a cycle. The general functional digraph can be described as a mix of permutations
and trees. Suppose we start at a vertex x and follow directed edges from x to f(x) to f2(x) =
f(f(x)) and so on. Eventually, since our vertex set is finite, we must return to a vertex already
visited. At that point we fall into a cycle and we will continue around and around it forever.
Consequently we can say this about the structure of a functional digraph: some vertices belong to
cycles, and the rest of the vertices have paths leading to these vertices.

Now let x be a vertex in a cycle and consider the set X of all vertices y such that y does not
belong to any cycle, and fk(y) = x for some k. Together with x, the vertices in X form a tree
directed into x as the root, since in the graph on X ∪ {x}, every path leads eventually to x. Now
every vertex not belonging to a cycle belongs to one such tree for some vertex x that does belong to
a cycle. In this way, given a functional digraph on a set A, we get a partition of A into rooted trees,
and an arrangement of the roots of the trees into a bunch of cycles, that is, into a permutation.
Here is a picture typical of the situation.



In this functional digraph, there are six trees, and the permutation on their roots is the one shown
in the previous figure. Note that two of the trees in this example are one-element trees consisting
of a root only.

What we have described is an equivalence of the structure “functional digraph” with the compos-
ite structure of (permutation)◦(rooted tree). Indeed, a directed rooted tree with all edges directed
into the root is the same as an undirected rooted tree, since the tree itself determines the directions,
and the structure of permutation that we have on the set of roots we can equally well think of as
being on the set of trees themselves, with each tree represented by its root. The generating function
for permutations is 1

1−x = 1/(1−x), and that for rooted trees is what we have denoted T (x). Hence
the generating function F (x) for functional digraphs is related to T (x) by

F (x) = 1/(1− T (x)).

To
To prove (1) we have now only do to a little bit of calculus and algebra. Our starting point is

the two identities
T (x) = xeT (x), F (x) = 1/(1− T (x)),

both of which we obtained directly from exponential generating function counting principles. Dif-
ferentiating both sides of the first identity gives

T ′(x) = eT (x) + xeT (x)T ′(x),

and hence
xT ′(x) = xeT (x) + x(xeT (x))T ′(x).

Using xeT (x) = T (x), this simplifies to

xT ′(X) = T (x) + xT (x)T ′(x),

or
(1− T (x))xT ′(x) = T (x).

Therefore
xT ′(x) = T (x)/(1− T (x)) = 1/(1− T (x))− 1 = F (x)− 1,

which is what we wanted to show.


