
Math 172—Spring 2010—Haiman
Notes on ordinary generating functions

1. How do we count with generating functions?

Many enumeration problems which are not so easy to handle by elementary means can be solved
using generating functions. In these notes I’ll describe the general set-up in which ordinary gener-
ating functions apply. Exponential generating functions are useful in a somewhat different set-up,
which we will discuss later.

Our basic problem will be to count objects of a given size, or weight, n. The specific meaning
of the weight will vary with the context, but here are some typical possibilities: n might be the
length of a word, or the size of a subset or multisubset of a given set, or we might be counting
compositions of n, or partitions of n. We can also have situations in which there is more than one
relevant weight. For example in counting partitions λ = (λ1, . . . , λk), we may want to keep track
of both the size of the partition n = w(λ) = λ1 + λ2 + · · ·+ λk, and the number of parts l(λ) = k,
to arrive at the number p(n, k) of partitions of n with k parts.

What often happens is that if we don’t fix the weight in advance, but rather try to count objects
of all weights simultaneously, it allows us extra freedom to make independent choices and thereby
simplify the problem. But we have to do this in a way that keeps track of the weights, so we can
solve our original problem. We will also have to deal with the fact that the set of all objects of
all possible weights is typically infinite. Both of these difficulties can be handled by generalizing
our usual idea of the number of elements of a finite set to a weight enumerator for elements of a
possibly infinite set with weights.

Definition Let S be a set equipped with a function w : S → N, called the weight function. Assume
that for each n, the subset {s ∈ S : w(s) = n} is finite, and let sn = |{s ∈ S : w(s) = n}| be its
number of elements (the whole set S is allowed to be infinite). The weight enumerator for S is the
generating function

S(x) =
∞∑

n=0

snx
n =

∑
s∈S

xw(s).

Note that if S is finite, then S(1) is just the number of elements of S. In general, S(x) should be
thought of as a kind of weighted count of the elements of S, where an element of weight n counts
as xn instead of 1.

The sum principle for weight enumerators is just like that for elementary counting, and follows
immediately from the definition:

Sum Principle. If S is the union S = A ∪ B of two disjoint subsets A ∩ B = ∅, then

S(x) = A(x) +B(x),

where S(x), A(x), B(x) denote the weight enumerators for S, A and B respectively (taking the
weight functions on A and B to be the restrictions of the given one on S).

There is also an analog for weight enumerators of the product principle from elementary counting.
For this, however, we have to be careful about how weights on the elements of the product are related
to those on the components: the weights are required to be additive.

Product Principle. If S is a Cartesian product S = A1 × · · · × Ak of weighted sets, and if the
weights satisfy w(s) = w(a1) + · · ·+ w(ak) for s = (a1, . . . , ak), then

S(x) = A1(x)A2(x) · · ·Ak(x)

where S(x), Ai(x) denote the weight enumerators for S and the sets Ai.
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To see why the product principle works, observe that for two sets S = A× B, we have

S(x) =
∑

(a,b)∈S

xw((a,b)) =
∑

(a,b)∈S

xw(a)+w(b) =
∑

(a,b)∈S

xw(a)xw(b) =
∑
a∈A

xw(a)
∑
b∈B

xw(b) = A(x)B(x).

The general case of a product of k sets follows from the two-set case by induction on k.

If our set S is equipped with more than one weight function, we will have a corresponding weight
enumerator which is a generating function in more than one variable, for example, if we have two
weight functions w and z, we would have a weight enumerator

S(x, y) =
∑
s∈S

xw(s)yz(s) =
∞∑

n=0

∞∑
k=0

sn,kx
nyk,

where sn,k is the number of elements s ∈ S such that w(s) = n and z(s) = k.

2. Words, compositions.

In many instances, typified by the examples in this section, we can assemble an object from
smaller pieces by first deciding on the number of pieces to use, say j, and then choosing the j pieces
independently, in a definite order. This leads to situations in which we use the product principle
for each j, and then sum over all j, leading to a geometric series involving a previously known
generating function.

As a first example, let us determine the number gn of words w of length n in the symbols {0, 1}
which do not contain consecutive 1’s. Before considering the generating function, we might observe
that gn satisfies the same recurrence as the Fibonacci numbers. To see this, note that the word w
must either start with a 0 or a 1. If it starts with a 0, the rest of the word can be any word of
length n− 1 without consecutive 1’s, giving gn−1 choices. Provided that n ≥ 2, if our word starts
with 1, then it must in fact start with 10. This can be followed by anything, giving gn−2 choices.
Hence

gn = gn−1 + gn−2, (n ≥ 2).

Since we also clearly have g0 = 1 and g1 = 2, we can deduce that gn is equal to the Fibonacci
number Fn+1. We could in turn obtain the generating function by using the recurrence, as explained
in your textbook. Instead we’ll take a different approach.

As a little thought will convince you, any word without consecutive 1’s can be built up in a
unique way by concatenating a sequence of subwords of the forms

0 or 10,

followed by an optional 1 at the end. Assigning each word a weight equal to its length, their weight
enumerator is G(x) =

∑∞
n=0 gnx

n. Let us try to evaluate this directly.
Suppose our word is built from j subwords 0 or 10. We can choose each of these independently

and multiply together the weight enumerators for each of the j choices. The weights are additive,
since the total length of the word we build up will be the sum of the lengths of the subwords we
build it from.

Now for each choice of a subword 0 or 10, we have a corresponding weight enumerator (x+x2), so
we get (x+x2)j as the generating function enumerating all concatentations of j of these subwords.
Summing this over all j, we get

∞∑
j=0

(x+ x2)j =
1

1− (x+ x2)



as the generating function for all words (including the empty word) built by concatenating any
sequence of any number of subwords 0 or 10. Finally, we can choose to add a 1 at the end or not,
either contributing nothing or one extra to the weight, so we should multiply the above generating
function by 1 + x, obtaining

G(x) =
1 + x

1− x− x2
.

Note, by the way, that xG(x) + 1 = 1/(1−x−x2). The coefficient of xn in xG(x) + 1 is gn−1 = Fn

for n ≥ 1, and is 1 = F0 for n = 0, so the Fibonacci number generating function is given by

F (x) =
∞∑

n=0

Fnx
n =

1
1− x− x2

,

in agreement with the formula you would obtain by using the recurrence (see Bona, Chapter 8, Ex.
4).

What we have done in this example is an instance of a more general method, which we may
formalize as a separate enumeration principle for generating functions.

Sequence principle. Let A be a set with weighted elements and generating function A(x).
Assume there are no elements of weight zero, so A(0) = 0. Then the generating function for
ordered sequences α1, α2, . . . , αj of of elements of A (of any length, including the empty sequence),
with weight defined to be the sum of the weights of the elements αi, is given by

1
1−A(x)

.

Some caution is due, when using the sequence principle, to be sure the set A has no elements of
weight zero. This is essential for two reasons. First of all, the expression 1/(1 − A(x)) makes no
sense as a formal series if A has non-zero constant term. Secondly, it makes no sense to enumerate
all sequences if there is an element α of weight zero in A, since we could pad any sequence with an
unlimited number of copies of α without changing its weight, giving infinitely many sequences of
the same weight. (These two difficulties are related to each other.)

Here are some more examples.

Example. Let us find the generating function for all words from the alphabet [k] = {1, . . . , k}. In
this case A is just [k], and each of its k elements has weight 1, so A(x) = kx. Hence the generating
function for all words is

1
1− kx

=
∑

n

knxn,

which shows that there are kn words with n letters from [k]. Of course we knew this already. This
example was just a warm-up.

Example. A composition of n is an expression

n = λ1 + λ2 + · · ·+ λk

of n as a sum of positive integers. In a composition of n, as a opposed to a partition of n, the order
of the parts matters. Thus 2 + 3 + 2 and 3 + 2 + 2, for instance, count as two different compositions
of 7. Let m(n, k) denote the number of compositions of n with k parts. We will find the generating
function M(n, k) =

∑
n,k m(n, k)xnyk, and use it to solve for m(n, k). In this case, we will use the

sequence principle for a two-variable generating function, which works just like the one-variable
case. Note that we are not fixing n or k in advance, so a composition is just an arbitrary sequence
of positive integers. The set A here is therefore the set of all positive integers. We have assigned
each composition two weights. One is its length, which is the exponent of y, while the other is



its size, which is the exponent of x in our generating function. Each integer i in the composition
contributes one to the length and i to the size, so is counted by the monomial xiy in the generating
function for A. Summing over all i ≥ 1 this gives A(x, y) = yx/(1− x), and hence

M(x, y) =
1

1− yx/(1− x)
=

1− x
1− x− xy

.

To solve for m(n, k) it is convenient to rewrite this as

M(x, y) = 1 + xy
1

1− x(1 + y)
= 1 + xy

∞∑
j=0

xj(1 + y)j

= 1 + xy
∑

j

xj
∑

i

(
j

i

)
yi.

Extracting the coefficient of xnyk, we see that this monomial occurs only in the term with j = n−1,
i = k − 1, so

m(n, k) =
(
n− 1
k − 1

)
.

Stricly speaking, this derivation is not correct for n = 0, although the answer is correct, since(−1
k

)
= 0 for k > 0, and

(−1
0

)
= 1.

Compositons of n with k parts are really the same thing as n-element multisets from [k] that
use every element at least once. From our table of distribution problems, their number is the same
as the number of (n− k)-element multisets from [k], or

(k+(n−k)−1
n−k

)
=
(
n−1
n−k

)
=
(
n−1
k−1

)
, in agreement

with the answer above.

Exercise: modify the above example to allow compositions of n in which some of the parts can be
zero. Note that as long as we use a two-variable generating function, counting the compositions
by length as well as size, this does not put an element of weight zero in A. The integer zero has
weight 1 for the length, and is counted by the monomial y, so the modified A(x, y) will still have
no constant term.

3. Catalan numbers

We define the Catalan number Cn to be the number of words formed from n left and n right
parentheses, with all parentheses balanced. We may tabulate the first few Catalan numbers by
listing all the possibilities.

n Cn

0 1 ∅
1 1 ()
2 2 ()(), (())
3 5 ()()(), (())(), ()(()), (()()), ((()))

Let

C(x) =
∞∑

n=0

Cnx
n

be the generating function for Catalan numbers. We will use the sequence principle to evaluate
it. Observe that each balanced parenthesis word, or Catalan word, can be uniquely expressed as a
sequence of outermost groups

( w1 )( w2 ) · · · ( wk ),



where the words wi inside each outer pair of parentheses are themselves Catalan words. Therefore,
let us apply the sequence principle taking A to be the set of words of the form ( w ) with w a
Catalan word. Note that the weight of ( w ) is one more than that of w, since the weight is the
number of left parentheses, or equivalently, the number of right parentheses. In particular, there
are no elements of weight zero in A, even though w can be the empty word. We get each element
of A by choosing a Catalan word, and surrounding it with an extra pair of parentheses. We can
think of this extra pair as a forced “choice,” with generating function x because it adds one to the
weight. Thus by a trivial application of the product principle, we have the generating function

A(x) = xC(x).

However, by the sequence principle, we also have

C(x) =
1

1−A(x)
.

Substiuting xC(x) for A(x) and clearing the denominator yields the quadratic equation

xC(x)2 − C(x) + 1 = 0

for the Catalan number generating function. Hence

C(x) =
1−
√

1− 4x
2x

.

An interesting point is how we know whether to take +
√

1− 4x or −
√

1− 4x here. To see that the
− sign must be right, note that 2xC(x) must equal the numerator in the above fraction, so this
numerator must have zero constant term as a formal series. Since 1 +

√
1− 4x does not vanish at

x = 0, it is the wrong numerator. Now we can use the extended binomial theorem to solve for the
Catalan numbers Cn themselves. We have

2xC(x) = 1− (1− 4x)1/2 = 1−
∞∑

n=0

(
1/2
n

)
(−4)nxn.

To extract Cn, compare coefficients of xn+1 on both sides, obtaining the rather messy formula

Cn = −(−4)n+1

2

(
1/2
n+ 1

)
= (−1)n22n−1

(
1/2
n+ 1

)
.

Writing out the binomial coefficient
(

1/2
n+1

)
= (1/2)(−1/2)(−3/2) · · · (−(2n− 1)/2)/(n+ 1)!, multi-

plying both numerator and denominator by n!, and simplifying, we eventually get

Cn =
1

n+ 1

(
2n
n

)
.

There is another interpretation of Catalan numbers in terms of lattice paths, as follows. The
condition for a parenthesis word to be balanced is that every initial segment of it have at least as
many left parentheses as right parentheses. If we translate the word into a lattice path that takes
one step north for each left parenthesis and one step east for each right parenthesis, then we get all
paths from (0, 0) to (n, n) that never go below the diagonal line x = y. Hence the Catalan number
Cn is equal to the number of these special lattice paths (known as Dyck paths). There are many
other interesting combinatorial objects whose number turns out to be Cn.



4. Ordered rooted trees

A tree is a connected graph without cycles. If we fix the set of vertices of our tree to be, say,
[n] = {1, . . . , n}, then we call the tree a labelled tree, the elements of the vertex set being the labels.
It is a famous theorem of Cayley that there are nn−2 different labelled trees on n vertices. A rooted
tree is a tree in which one of the vertices is distinguished and called the root. It is conventional to
draw a rooted tree with the root at the bottom and the path from the root to each vertex going
up, like this.

Since there are n choices for the root, there are nn−1 different rooted labelled trees on n vertices.
The vertex directly below a vertex v in a rooted tree is the parent of v (the root has no parent).

The vertices directly above v, if any, are its children.
Besides labelled trees, we can also count various sorts of unlabelled trees. Technically, an unla-

belled tree is an equivalence classes of labelled trees, two trees being equivalent if they differ only
by a permutation of the labels. In this section we will only consider ordered, rooted, unlabelled
trees. By ordered, we mean that in addition to the tree itself, there is given a linear ordering of the
children of each vertex. In practice, the ordering is indicated implicitly by drawing the tree so that
the children of each vertex are ordered left-to-right. This means, for instance, that the drawing
above represents a different ordered tree than the tree

.

However, these two drawings would represent the same unordered, unlabelled tree.
We can use generating functions to count ordered rooted trees. Let tn denote the number of

these trees with n vertices, including the root, and let T (x) =
∑

n tnx
n be their generating function.

To build any tree, we can first place the root, and then choose the (ordered) sequence of branches
based on each child of the root. Each branch is itself an ordered rooted tree, and there can be any
number of them. The generating function for the collection of branches is then

1/(1− T (x))

by the sequence principle. We must multiply this by a factor of x to account for the additional
vertex at the root, giving

T (x) =
x

1− T (x)
.



As with the Catalan number generating function, this leads to a quadratic equation for T (x):

T (x)2 − T (x) + x = 0,

whose solution is

T (x) =
1−
√

1− 4x
2

.

Note that
T (x) = xC(x).

Hence, comparing coefficients of xn, we see that tn = Cn−1 for n > 0, while t0 = 0, since by
definition a rooted tree is not empty.

Incidentally, for ordered trees, it is easy to switch between the labelled and unlabelled versions
of the problem. The ordering of the tree effectively “names” every vertex, so that on a labelled
ordered rooted tree, every permutation of the labels gives a different tree. Hence the number of
ordered, rooted labelled trees on n vertices is simply n!tn = n!Cn−1.


