
Notes on the Matrix-Tree theorem and Cayley’s tree enumerator

1. Cayley’s tree enumerator

Recall that the degree of a vertex in a tree (or in any graph) is the number of edges emanat-
ing from it. We will determine the generating function enumerating labelled trees on the vertex
set [n] = {1, 2, . . . , n}, weighted by their vertex degrees. Thus we introduce variables x1, . . . , xn

corresponding to the vertices, and associate to every tree T the monomial

xT = x
d1(T )
1 · · ·xdn(T )

n ,

where di(T ) denotes the degree of vertex i in T . Note that we can also write the same monomial
as the product over all edges of T

xT =
∏

{i,j}∈E(T )

xixj .

This is the same thing because each variable xi appears once in the above product for every edge
e ∈ E(T ) that contains the vertex i. Our desired generating function is the sum of these monomials
over all spanning trees T on the vertex set [n]. It is a polynomial in the variables xi. Since each
tree has n−1 edges, we see from the second formula for xT that in fact the generating function is a
homogeneous polynomial of degree 2n− 2. The following remarkable formula for it was discovered
by Cayley.

Theorem 1. The generating function enumerating trees on [n] by the degrees of the various vertices
is given by ∑

T

xT = x1x2 · · ·xn(x1 + x2 + · · ·+ xn)n−2.

We will now prove Cayley’s formula by means of a slightly subtle generating function argrument.
One nice thing about this method of proof is it can be adapted, as we will do in the next section,
to prove an even more powerful formula, the matrix–tree theorem.

Let us define
Cn(x) =

∑
T

xT

to be our desired generating function. We will show that the two polynomials Cn(x) and
x1 · · ·xn(x1 + · · · + xn)n−2 have enough properties in common to imply that they are actually
equal. Let’s begin by observing some of these common properties.

(1) Both polynomials are homogeneous of degree 2n − 2. We won’t actually need this in the
proof, but at least it is encouraging. We have already seen that this is so for Cn(x), and it is
obvious for x1 · · ·xn(x1 + · · ·+ xn)n−2.

(2) For n > 1, both polynomials are divisible by x1 · · ·xn. This is again obvious for x1 · · ·xn(x1 +
· · · + xn)n−2. For Cn(x) it follows from the fact that every vertex in a tree has degree at least 1,
since trees are connected. Incidentally, this is not true for n = 1, when Cn(x) = 1. However,
Cayley’s formula remains correct for n = 1, since it reduces to x1(x1)−1 = 1.

(3) For n > 1, both polynomials have the property that every term contains some variable xi to
exactly the first power. For Cn(x), this just says that every tree has a vertex of degree 1, that is, a
“leaf.” For x1 · · ·xn(x1 + · · ·+ xn)n−2 it follows from the fact that the factor (x1 + · · ·+ xn)n−2 has
degree less than the number of variables, and therefore each of its terms omits at least one variable.

This last property is the key one for our proof of the formula. To show that the two polynomials
are the same, we must show that every monomial has the same coefficient in both polynomials. By
property (3), it is sufficient to consider only monomials containing xi to exactly the first power, for
each i.
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Now we will actually prove the theorem, by induction on n. The base case is n = 1, which
we have seen holds. For n > 1, we assume the formula holds for trees on n − 1 vertices. Using
property (3), we can fix an index i and consider only those terms containing xi to the first power.
By property (2), every term in both polynomials contains xi to at least the first power, so we can
extract the terms we want by first dividing by xi and then setting xi = 0 in what remains. In other
words, we need to show that

(1) (x−1
i Cn(x))xi 7→0 = (x−1

i x1 · · ·xn(x1 + · · ·+ xn)n−2)xi 7→0.

By symmetry, it is enough to show this for i = n, since all the variables play identical roles. Then
the right hand side above simplifies to

x1 · · ·xn−1(x1 + · · ·+ xn−1)n−2,

which is equal to
(x1 + · · ·+ xn−1)Cn−1(x1, . . . , xn−1)

by the induction hypothesis. On the left hand side in (1) we have the sum of all terms in Cn(x)
containing xn to the first power, except that this has been divided by xn. Note that the terms in
question are exactly those for which the vertex n is a leaf of the tree T . Hence we need to show
that

(2)
∑

T : n is a leaf

xT = xn(x1 + · · ·+ xn−1)Cn−1(x1, . . . , xn−1).

Now, this is easy to establish combinatorially. To pick a tree with vertex n as a leaf, we can first
choose any tree T ′ on the vertex set [n − 1], then connect n by an additional edge to any vertex
in T ′. The generating function for the possible choices of T ′ is Cn−1(x1, . . . , xn−1). The generating
function for the choice of an edge {i, n} with 1 ≤ i ≤ n is x1xn + · · ·+xn−1xn = xn(x1 + · · ·+xn−1).
Multiplying these gives the right hand side in (2).

2. Corollaries to Cayley’s formula

Setting all the variables xi equal to 1 in Theorem 1, we get the number of labelled trees on n
vertices.

Corollary 1. The number of labelled trees on n vertices is nn−2.

If we want to count labelled rooted trees instead, we can just multiply by n for the possible
choices of the root.

Corollary 2. The number of labelled rooted trees on n vertices is nn−1.

We can also use Cayley’s formula to count rooted forests. A forest is a graph with no cycles
that is not necessarily connected. Thus its connected components are trees. It is a rooted forest if
we specify a root in each component. Given a rooted forest F on [n], we can construct a rooted
tree T on {0, 1, . . . , n} with 0 as the root by connecting vertex 0 by an edge to the root of each
component of the forest F . Conversely, given a tree T on {0, 1, . . . , n}, we can delete 0 and the
edges containing it to get a forest F on [n], and record which vertices were connected to 0 in T by
specifying them as the roots of the components of F . It is easy to see that these two constructions
provide a bijection between labelled trees on {0, 1, . . . , n} (with fixed root at 0), and rooted forests
on [n] (with any roots). Hence we have the following corollary.

Corollary 3. The number of labelled rooted forests on n vertices is (n + 1)n−1.



If we keep track of the weights in the trees-to-forests bijection we can get some additional
information. For example, in the Cayley formula enumerating trees on {0, 1, . . . , n} suppose we set
all the variables except x0 to 1. Then we will enumerate the trees by the degree of vertex 0, which
is the same as the number of components in the corresponding forest. The resulting enumerator is

x0(x0 + n)n−1.

Extracting the coefficient of xk
0 using the binomial theorem, we obtain the following result.

Corollary 4. The number of labelled rooted forests on n vertices with exactly k components is(
n− 1
k − 1

)
nn−k.

Note that for k = 1 this gives the same result as Corollary 2.

3. The matrix-tree theorem

In Cayley’s formula, the monomial xT keeps track of the vertex degrees in the tree T . This is
quite a bit of information, but not enough to determine the tree. The matrix-tree theorem is a
more refined formula that gives, in effect, the complete symbolic series for labelled trees, and more
generally for labelled forests with specified roots. In this formula we will attach to each forest F a
monomial that actually contains a complete description of F .

Consider the example shown here of a rooted forest on the vertex set [8].
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We have directed every edge toward the root of the component containing it, that is, from child to
parent. We introduce variables xij for all i, j ∈ [n] with i 6= j, and define the forest monomial xF

to be the product of the variables xij for all directed edges i→ j in F . Note that x21 and x12, for
example, are different variables in this setting. Thus for the example forest above, we have

xF = x56x62x32x18x78.

Note that the rooted forest F is determined by its monomial xF . The variables occuring in xF tell
us the edges of F , and their directions tell us the roots. In fact, the roots are just the vertices i
for which no variable xij with first index i occurs in xF , that is, the vertices with no parent in F .
Given a subset I ⊆ [n], we define Fn,I(x) to be the generating function for all forests whose set of
roots is I, that is

Fn,I(x) =
∑

F :roots(F )=I

xF .

For example, by taking I = {1} we get a generating function for spanning trees on [n], with vertex
1 fixed as the root (this only serves to determine the directions of the edges).



The matrix-tree theorem gives Fn,I(x) as the determinant of a submatrix of the following n× n
matrix:

Mn(x) =


(x12 + · · ·+ x1n) −x12 −x13 . . . −x1n

−x21 (x21 + x23 + · · ·+ x2n) −x23 . . . −x2n
...

. . .
...

−xn1 −xn2 −xn,n−1 . . . (xn1 + · · ·+ xn,n−1)

 .

The rule of construction for Mn(x) is that the off-diagonal entry in position (i, j) is −xij , while
the diagonal entries are such that every row sums to zero. In other words, the diagonal entry in
position (i, i) is the sum of the variables xij for all j 6= i.

Theorem 2. The generating function Fn,I(x) for forests rooted at I, with edges directed towards
the roots, is given by the determinant

Fn,I(x) = det Mn,I(x),

where Mn,I(x) is the square submatrix of the matrix Mn(x) above, gotten by deleting the rows and
columns with indices i ∈ I.

Before turning to the proof, let us clarify the meaning of this with some examples.
Example: If I = ∅ and n > 0, then Fn,∅(x) = 0, since every forest must have at least one root.

According to the theorem, we should also have det Mn(x) = 0, since Mn,∅(x) = Mn(x). This is
correct because the sum of the columns of Mn(x) is zero. Recall that if the columns of a matrix
are linearly dependent, then its determinant vanishes.

Example: If I = [n], there is just one forest, with no edges, so Fn,[n](x) = 1. The matrix Mn,[n](x)
is the empty matrix with no rows or columns. By convention, the determinant of an empty matrix
is 1. This, by the way, is the correct convention for consistency with properties of the determinant
such as the Laplace expansion or the fact that the determinant is the product of the eigenvalues.

Example: If I = {1, 2, . . . , n− 1}, we get a forest with roots I by attaching vertex n by a single
edge to one of the vertices 1 through n− 1. The forest is the graph with only the one edge {n, j},
and it is directed from n to j, so its monomial is xnj . Hence Fn,I(x) = xn1 + xn2 + · · · + xn,n−1

in this case. To get Mn,I(x) we delete all rows and columns of Mn(x) except the last, leaving only
the diagonal entry in position (n, n). This entry is indeed equal to xn1 +xn2 + · · ·+xn,n−1. Similar
reasoning with I = [n] \ {j} for any j “explains” the other diagonal entries of Mn(x).

Example: To get an example involving a non-trivial determinant we must have I nonempty and
n− |I| > 1. So the first non-trivial example is n = 3, I = {3}. There are three forests, shown here.
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Adding up their monomials, we obtain the generating function

F3,{3}(x) = x12x23 + x21x13 + x13x23.

Applying the theorem, we delete the last row and column from M3(x), getting the determinant

det
[
x12 + x13 −x12

−x21 x21 + x23

]
= (x12 + x13)(x21 + x23)− x12x21,

which agrees with the expression we found for F3,{3}(x).



Now we will prove Theorem 2. As with the Cayley formula, we first observe that Fn,I(x) and
det Mn,I(x) have a property in common that will allow us to eliminate some of the variables and
reduce to the n−1 case, which we can assume holds by induction. In the examples we have already
seen that the theorem holds when I = ∅, so we will assume that I 6= ∅.

We claim that every term of both Fn,I(x) and det Mn,I(x) has the property that for some j, none
of the variables xij with second index j occurs in that term. For Fn,I(x) this is true because for the
term xF we can take j to be a leaf of one of the trees in the forest F . Then F has no edge directed
into j, so no variable xij occurs in xF . For Mn,I(x) we observe that all the entries of the matrix are
linear in the variables, and hence the determinant is a homogeneous polynomial of degree n− |I|.
Since we are assuming I 6= ∅, this degree is less than n. If a monomial contains some variable xij

for every index j, then its degree is at least n, so no such monomial appears in det Mn,I(x).
Having established that every term in both polynomials omits all the variables xij for some j, it

follows that it is enough to verify that both polynomials give the same thing on setting all xij = 0,
for each j. By symmetry, it is enough to verify this for j = n. (Note that the statement of the
theorem for a given I is not symmetric in all the indices 1 through n, since some indices belong to
I and others do not. However, the statement as a whole for all I is symmetric in the vertex indices.
Thus we can safely assume j = n, provided we verify the result for all I).

Setting all xin = 0 in Fn,I(x) kills off any terms xF belonging to forests F with an edge directed
into vertex n, leaving the generating function for rooted forests in which vertex n is a leaf—that
is, in which vertex n has no children. If n ∈ I, then n is both a root and a leaf, so we get the
enumerator for forests in which n is an isolated vertex, which is the same as the enumerator for
forests on [n− 1] with roots J = I \ {n}. If n 6∈ I, then we can choose a forest in which n is a leaf
but not a root by first choosing any forest on [n− 1] with roots I, and then attaching n by an edge
to any vertex in [n − 1]. This introduces a factor xn1 + · · · + xn,n−1, with one term xnj for each
vertex j that we might connect n to. To summarize, we have

Fn,I(x)xin 7→0 =

{
Fn−1,J(x), if n ∈ I, where J = I \ {n}
(xn1 + · · ·+ xn,n−1)Fn−1,I(x) if n 6∈ I.

Setting all xin = 0 in Mn(x) gives a matrix which can be described in block form as

Mn(x)xin→0 =
[

Mn−1(x) 0
−xn1 · · · − xn,n−1 (xn1 + · · ·+ xn,n−1)

]
.

Here we have an (n − 1) × (n − 1) square block equal to Mn−1(x), a column of n − 1 zeros to its
right, and the bottom row of the original Mn(x) is unchanged. If n ∈ I, we will delete the last row
and column, giving

det Mn,I(x)xin 7→0 = det Mn−1,J(x),

where J = I \ {n}. This is equal to Fn−1,J(x) by induction, and hence to Fn,I(x)xin 7→0 by the
calculation above. Alternatively, if n 6∈ I, then we keep the last column in the matrix Mn(x)xin 7→0

above. Using the Laplace expansion of the determinant along this last column, we get (xn1 + · · ·+
xn,n−1) times the determinant of the block Mn−1(x) with its rows and columns for i ∈ I deleted,
that is,

det Mn,I(x)xin 7→0 = (xn1 + · · ·+ xn,n−1) det Mn−1,I(x).

Again, this is equal to Fn,I(x)xin 7→0 by induction and the previous calculation. So we have shown
that

det Mn,I(x)xin 7→0 = Fn,I(x)xin 7→0

in either case—whether n ∈ I or not—and we have already seen that this is sufficient to prove the
theorem.



4. Corollaries to the Matrix-Tree Theorem

We will use the matrix-tree theorem to again obtain the formula nn−2 for the number of labelled
spanning trees on n vertices. For this purpose we take I = {n} and set all the variables xij equal
to 1. Note that any one-element set I = {j} would give the same result, since we can root our
spanning trees at any vertex. The matrix Mn,I(x) now specializes to the (n− 1)× (n− 1) matrix
with diagonal entries n− 1 and off-diagonal entries −1. We can write it as

nIn−1 − Jn−1,

where In−1 is the identity matrix and Jn−1 is the matrix whose entries are all equal to 1. Now
recall from linear algebra that the determinant of any matrix is the product of its eigenvalues. The
matrix Jn−1 has n− 2 linearly independent nullvectors, that is, vectors v such that vJn−1 = 0. In
fact, the n− 2 vectors of the form

v = [1, 0, . . . , 0,−1, 0, . . . , 0]

are linearly independent nullvectors. A nullvector is an eigenvector with eigenvalue zero, so Jn−1

has the eigenvalue zero with multiplicity n− 2 (for convenience, I am using left eigenvectors here,
that is, an eigenvector of A is a row vector v such that vA is a scalar multiple of v). The vector

v = [1, . . . , 1]

is also an eigenvector, with eigenvalue n − 1, since vJn−1 = (n − 1)v. So the complete list of
eigenvalues of Jn−1 consists of 0, with multiplicity n − 2, and n − 1, with multiplicity one. The
eigenvalues of −Jn−1 are the negatives of these. Adding nIn−1 adds n to every eigenvalue, so
Mn,I(1) has eigenvalues n, repeated n− 2 times, and 1, once. Its determinant is therefore nn−2.

By similar reasoning, we can derive Cayley’s formula as a corollary to the matrix-tree theorem.
This time, instead of setting all xij = 1, we introduce new variables x1, . . . , xn as in Cayley’s
formula, and set xij = xixj . As before, we take I to consist of any one vertex, say vertex n. The
forests F rooted at n are just the spanning trees T , and our forest monomial xF goes to xT when
we set xij = xixj . The matrix Mn,I(x) now specializes to

x1(x2 + · · ·+ xn) −x1x2 . . . −x1xn−1

−x2x1 x2(x1 + x3 + · · ·+ xn) . . . −x2xn−1
...

. . .
...

−xn−1x1 −xn−1x2 . . . xn−1(x1 + · · ·+ xn−2 + xn)

 ,

which can also be written in the form

Mn,I(xixj) = D((x1 + · · ·+ xn)In−1 − Jn−1D),

where D is the diagonal matrix with diagonal entries x1, x2, . . . , xn−1. The determinant of D is
x1 · · ·xn−1, so the determinant of Mn,I(xixj) is given by

x1 · · ·xn−1 det((x1 + · · ·+ xn)In−1 − Jn−1D).

Just as before, the n− 2 vectors [1, 0, . . . , 0,−1, 0, . . . , 0] are independent left nullvectors of Jn−1D.
The vector v = [1, . . . , 1] satisfies vDJn−1 = (x1 + · · · + xn−1)v, so it is a left eigenvector of

DJn−1 with eigenvalue (x1 + · · · + xn−1). Now D and Jn−1 are symmetric matrices, so DJn−1 is
the transpose of Jn−1D. Since a matrix at its transpose have the same eigenvalues, it follows that
(x1 + · · · + xn−1) is also an eigenvalue of Jn−1D. Since we saw previously that Jn−1D has n − 2
independent left nullvectors, it follows that its eigenvalues are zero, with multiplicity n − 2, and
(x1 + · · · + xn−1), with multiplicity one. Negating these eigenvalues and adding (x1 + · · · + xn)
to all of them, we see that the eigenvalues of (x1 + · · · + xn)In−1 − Jn−1D are (x1 + · · · + xn),



with multiplicity n−2, and xn, with multiplicity one. Finally, mutliplying the eigenvalues together
along with the factor x1 · · ·xn−1 yields Cayley’s formula

x1x2 · · ·xn(x1 + x2 + · · ·+ xn)n−2

for the generating function.
One advantage of the matrix-tree theorem is that we can use it to count forests as well as trees.

Fix a set of roots I with k elements. To count all forests with exactly k components and the
specified roots I, we can set the variables xij equal to 1 in Mn,I(x) just as we did above. In this
case we get the matrix

Mn,I(1) = nIn−k − Jn−k.

The eigenvalues of −Jn−k are n − k − 1 zeroes and an n − k, by the same reasoning as before, so
the eigenvalues of Mn,I(1) are n, repeated n− k − 1 times, and k, once. This yields the following
result.

Corollary 5. The number of labelled rooted forests on n vertices with exactly k components, and
with roots specified in advance, is

knn−k−1.

It is instructive to compare this with Corollary 4, where we computed the corresponding number
with unspecified roots. To compute the number in Corollary 4 we could first pick the k roots, in

(
n
k

)
ways, then choose a forest with these specified roots. The resulting number

(
n
k

)
knn−k−1 agrees with

Corollary 4 after a little algebraic manipulation. Neither Corollary is helpful if we want to count
unrooted forests, however. Eventually we will need exponential generating functions to accomplish
that.

To close, here is a curious application of the matrix-tree theorem to deduce a general theorem of
linear algebra. If we set xij = xji for each {i, j}, the matrix Mn(x) becomes a symmetric matrix,
with all row (and column) sums equal to zero. What’s more, since there is a separate variable xij

for each off-diagonal position (up to transpose), we can get any symmetric matrix A whatsoever,
provided it has row and column sums zero, by setting the variables xij to the corresponding entries
of A. For a one-element set of roots I = {j}, the determinant of Mn,{j}(x) enumerates spanning
trees on [n], with their edges directed towards vertex j. But once we set xij = xji, the directions
of edges don’t matter, so this determinant does not depend on which j we take. This proves the
following result.

Corollary 6. If A is a symmetric matrix with all row and column sums equal to zero, and Aj

denotes the submatrix gotten by deleting row and column j, then det Aj is the same for every j.

By the way, for any symmetric matrix A, without restriction on the row and column sums, the
determinants det Aj are called principal minors of A.


