
Notes on cycle generating functions

1. The cycle generating function of a species

A combinatorial species is a rule attaching to each finite set X a set of structures on X, in such
a way that the allowed structures do not depend on the particular names of the elements of X.
This concept is best illustrated by giving examples of structures that do and do not form species.

In the notes on exponential generating functions, one kind of structure we enumerated was that
of an alternating permutation on the numbers 1, 2, . . . , n. Recall that this meant a permutation
a1, a2 . . . , an of these numbers such that a1 < a2 > a3 < a4 · · · . These turned out to be interesting
structures, because the exponential generating function for odd-length alternating permuations
is tanx, and the exponential generating function for even-length ones is secx. However, these
structures do NOT belong to a species. The reason is that the condition a1 < a2 > a3 · · · depends
on the relation “<,” which is specific to numbers. One way to express this difficulty is that there is
no meaning to the concept of an alternating permutation of a set X whose elements have no built-in
order. Another, somewhat more precise, way to formulate the trouble is that it is not possible to
permute the numbers in an alternating permutation and still have an alternating permutation.

For constrast, consider the structure of labelled tree on a vertex set X. The concept of a labelled
tree on any vertex set whatsoever is meaningful, because it does not depend on the particular
names of the vertices. Again, we can formulate this more precisely by saying that you can permute
the vertices of a labelled tree and get another (maybe the same) labelled tree. Labelled trees DO
form a species.

Other examples of species are the species of all linear orderings of a set X, or the species of all
permutations of a set X, or the trivial species which has just one structure on each set X. As we
shall see, the linear orderings of X and the permuations of X are two different species, even though
each has the same number of structures on an n element set, namely n!, and even though the two
species therefore have the same exponential generating function. In fact, all of the examples of
structures that we have enumerated using exponential generating functions are species, with the
sole exception of alternating permutations.

If F is a species, we will denote the set of F -structures on a set X by F (X). Because F is a
species, the group of permutations of X acts on F (X). In particular, the symmetric group Sn acts
on F ([n]). Here, as usual, [n] is an abbreviation for {1, 2, . . . , n}.

Definition. The cycle generating function of a species F is the formal power series in a variable x
and infinitely many variables p1, p2, . . . defined by the formula

ZF (p1, p2, . . . ;x) =
∞∑
n=0

xn

n!

∑
g∈Sn

|F ([n])g|pj1(g)
1 p

j2(g)
2 · · · pjn(g)

n .

Here F ([n])g denotes the set of F -structures on [n] which are fixed by the permutation g, and jk(g)
is the number of k-cycles of g (acting on [n]).

To make things clear, let’s work out the first few terms of ZF for the species F of labelled,
unrooted trees. For each n and each permutation g ∈ Sn, we need to figure out how many trees
are fixed by g. It will be enough to do this for one permutation of each cycle type, since they all
fix the same number of trees.

For n = 0, there is just one tree, and just one g, namely the identity permutation of the empty
set, which has no cycles. The corresponding term in ZF is 1.

For n = 1, there is again just one tree and one permutation, the identity, but now it has a single
cycle of length 1, so its monomial is p1. The corresponding term in ZF is xp1.
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For n = 2, there is still just one tree. Now there are two permutations, the identity and (1 2),
and of course they both fix the one tree. The corresponding term in ZF is

x2

2
(p2

1 + p2).

For n = 3, there are three trees, shown here.

21 3 2 1 3 1 3 2
The identity element in S3 obviously fixes all of them, contributing 3p3

1. The element g = (1 2)
fixes one tree, the last one shown above, contributing a monomial p1p2. There are two more
transpositions, (1 3) and (2 3), contributing a total of 3p1p2. The 3-cycles (1 2 3) and (1 3 2) do
not fix any trees, so they contribute nothing. The resulting third term in ZF is

x3

6
(3p3

1 + 3p1p2) =
x3

2
(p3

1 + p1p2).

Before we compute the fourth term, let us notice something interesting about the third term.
The automorphism group Aut(T ) of a tree T on labelled vertices {1, . . . , n} is defined to be the
set of permutations g ∈ Sn that fix T . Informally speaking, these are the symmetries of T . The
automorphism group of any F -structure on a set X is defined similarly. So, for instance, the auto-
morphism group of the last tree shown above is the two-element subgroup G = {(1)(2)(3), (1 2)(3)}
of S3.

Given any group G of permutations, we may assign each element g ∈ G weights j1(g), j2(g), . . .,
where jk(g) is the the number of k-cycles in g, as before, and form the ordinary generating function∑

g∈G p
j1(g)
1 p

j2(g)
2 · · · pjn(g)

n . The cycle index ofG is defined to be 1/|G| times this generating function.
In the example above, with G = {(1)(2)(3), (1 2)(3)}, the cycle index is

CG(p1, p2, . . .) =
1
2

(p3
1 + p1p2).

Notice that the third term in ZF , which we just computed, is equal to x3 times this cycle index.
In this case we got the group G from the last tree, but since the others are isomorphic to it, their
automorphism groups have the same cycle index, although they are different groups.

All this suggests that it might be more efficient to evaluate the terms of ZF , not by considering
each permutation g and looking at the trees that it fixes, but by considering each isomorphism type
of tree, and looking at the permutations that fix it, that is, at its automorphism group. Let’s take
this approach to computing the fourth term of the cycle generating function ZF for trees.

There are two isomorphism types of trees on four vertices. A typical tree of the first type is a
“path”

21 3 4 ,

and there are 12 trees isomorphic to and including this one. A typical tree of the second type is a
“star”

1

2

3

4 ,

and there are 4 trees of this type. A “path” tree has two automorphisms: the automorphism group
of the one shown above consists of the identity and the permutation g = (1 4)(2 3). Each of the



twelve “path” trees therefore contributes p4
1 + p2

2 to the total
∑

g∈S4
|(trees)g|pj11 (g)pj2(g)

2 · · · , for a
net contribution of

12(p4
1 + p2

2).
The automorphism group of a “star” tree is the symmetric group on the labels of the three outer
vertices, the center vertex being always fixed. For the one shown above it is the subgroup of
S4 which is a copy of S3, with all its elements fixing 4. Each “star” tree therefore contributes
p4

1 + 3p2
1p2 + 2p1p3, for a net contribution of

4(p4
1 + 3p2

1p2 + 2p1p3).

Hence the fourth term of ZF is

x4

(
1
2

(p4
1 + p2

2) +
1
6

(p4
1 + 3p2

1p2 + 2p1p3)
)
.

Note that this is x4 times the sum of the cycle indices for the automorphism groups of the two
types of trees. This is not an accident; we will prove the general result below.

Returning to our example and writing out all terms computed so far, we have for the species F
of labelled trees,

ZF = 1 + xp1 +
x2

2
(p2

1 + p2) +
x3

6
(3p3

1 + 3p1p2) +
x4

24
(16p4

1 + 12p2
2 + 12p2

1p2 + 8p1p3) + · · · .

Let’s make a couple of additional observations about this result. First of all, every tree is obviously
fixed by the identity element, so the term involving pn1 has coefficient equal to the number of labelled
trees, which we know should be nn−2. This agrees with the coefficients you see above: 1, 1, 1, 3,
16. We can extract just these terms by setting p1 = 1 and every other pk = 0. Then we get

ZF (1, 0, 0, . . . ;x) = 1 + x+
x2

2
+ 3

x3

6
+ 16

x4

24
+ · · · ,

which is the usual exponential generating function for labelled trees.
Second, suppose we set every pk = 1. Then the cycle index of each automorphism group becomes

1, and we get
ZF (1, 1, 1, . . . ;x) = 1 + x+ x2 + x3 + 2x4 + · · · ,

which is the ordinary generating function for unlabelled trees. Here you begin to see why exponential
generating functions count labelled structures and ordinary generating functions count unlabelled
ones: each kind of generating function is a special value of the cycle generating function, which
incorporates them both.

2. Properties of the cycle generating function

We now turn to some general properties of the cycle generating function ZF (p1, p2, . . . ;x). We
have already seen some of these properties in the example in Section 1. To establish the main
properties, we will look at the formula for ZF from two different vantage points.

First of all, we can view ZF as the exponential generating function for the sums∑
g∈Sn

|F ([n])g|pj1(g)
1 p

j2(g)
2 · · · pjn(g)

n .

This sum in turn is an ordinary generating function: a weighted enumerator for pairs (f, g) con-
sisting of an F -structure f and a permutation g that fixes f , with the weight of the pair keeping
track of the cycle structure of g, and given by p

j1(g)
1 p

j2(g)
2 · · · pjn(g)

n . Hence ZF is the mixed expo-
nential/ordinary generating function for structures consisting of a pair (f, g), weighted by the cycle
monomial of g. Now if we set p1 = 1 and pk = 0 for all other k, we are setting the weight to



zero for all pairs in which g is not the identity element, and to 1 for pairs (f, 1). This gives the
exponential generating function for the structures f , since to choose a pair (f, 1) is just to choose
f . We summarize these observations as a theorem.

Theorem 1. The special value
ZF (1, 0, 0, . . . ;x)

of the cycle generating function for a species F is equal to the usual exponential generating function
for F -structures.

Next, let us rewrite the formula for ZF by summing first over structures f , and then over
permutations g that fix f , that is, over g ∈ Aut(f). We have

ZF =
∑
n

xn

n!

∑
f∈F ([n])

∑
g∈Aut(f)

p
j1(g)
1 p

j2(g)
2 · · · pjn(g)

n .

Now for different isomorphic structures f , that is, for different structures f in the same orbit of
the action of Sn on F ([n]), the sum

∑
g∈Aut(f) p

j1(g)
1 p

j2(g)
2 · · · pjn(g)

n is the same. For each orbit
of F -structures, this sum appears as many times as the size of the orbit. By the orbit-stabilizer
theorem, the size of the orbit is given by | orb(f) | = |Sn|/|Aut(f)|, since Aut(f) is, by definition,
the stabilizer of f in Sn. Hence we have

ZF =
∑
n

xn

n!

∑
Orb(Sn,F ([n]))

n!
|Aut(f)|

∑
g∈Aut(f)

p
j1(g)
1 p

j2(g)
2 · · · pjn(g)

n ,

which is equal to
ZF =

∑
n

xn
∑

Orb(Sn,F ([n]))

CAut(f)(p1, p2, . . .).

Here Orb(Sn, F ([n])) denotes the set of orbits of Sn acting on the F -structures on [n], and
CAut(f)(p1, p2, . . .) is the cycle index of the automorphism group of any structure f belonging
to the chosen orbit.

Now an orbit of Sn on F ([n]) is the same thing as an unlabelled F -structure, so we have arrived
at a new interpretation of ZF : it is the ordinary generating function for the cycle indices of the
automorphism groups of unlabelled F -structures. From this we deduce a second theorem giving a
special value of ZF .

Theorem 2. The special value
ZF (1, 1, 1, . . . ;x)

of the cycle generating function for a species F is equal to the ordinary generating function for
unlabelled F -structures.

Proof. This follows from the preceding observations and the fact that for any group of permutations
G, the cycle index satisfies CG(1, 1, 1, . . .) = 1. The latter fact holds because CG(p1, p2, . . .) is by
definition 1/|G| times a sum of |G| monomials in the variables pk. �

3. More examples

In this section we will compute the cycle generating functions for some of the most important
species.

Example. Let F be the trivial species, with only one F -structure on [n] for every n. Then of
course there is only one unlabelled F -structure, and its automorphism group is all of Sn. It follows



that the cycle generating function for the trivial species is

(1) Ztriv =
∞∑
n=0

xnCSn(p1, p2, . . .),

the ordinary generating function for the cycle indices of the symmetric groups Sn. Of course this
is only useful if we can calculate CSn(p1, p2, . . .). However, Ztriv can also be viewed as a mixed
ordinary/exponential generating function for permutations, in which each permutation counts with
a weight monomial pj11 p

j2
2 · · · for a permutation with j1 1-cycles, j2 2-cycles, and so on. Without

this extra detail, we would count permutations as composite structures (trivial) ◦ (cycle), giving
the exponential generating function

e− log(1−x) = ex+x2/2+x3/3+···.

But it is easy to modify this to keep track of the cycle lengths: in the k-th term of the exponent,
we just introduce a factor pk. Hence we have the formula

(2) Ztriv = ep1x+p2x2/2+p3x3/3+···.

By expanding and comparing term by term with equation (1) above, we can use this formula to
compute the cycle indices CSn(p1, p2, . . .) for arbitrary n.

Let’s look briefly at the special values given by the theorems in Section 2. First, if we set p1 = 1
and all other pk = 0, we get

Ztriv(1, 0, 0, . . . ;x) = ex.

This agrees with the familiar exponential generating function for the trivial species. Next, if we set
all pk = 1, we get

e− log(1−x) =
1

1− x
.

This is the ordinary generating function for the unlabelled trivial species. There is one trivial
unlabelled structure for each n, and we have obtained, as we expect, the geometric series with all
coefficients equal to 1.

Example: The species of linear orderings. The automorphism group of a linear ordering is trivial,
since any permutation of the elements changes the order. All the linear orderings of [n] form a
single Sn orbit, which is to say, there is just one unlabelled linear ordering for each n. Using the
interpretation of ZF as an ordinary generating function for cycle indices of automorphism groups,
we immediately obtain the formula

Zlin =
∞∑
n=0

xnpn1 =
1

1− p1x
.

The first special value is

Zlin(1, 0, 0, . . . ;x) =
1

1− x
,

which is the exponential generating function for linear orderings. The second special value is

Zlin(1, 1, 1, . . . ;x) =
1

1− x
.

Of course this comes out to the same thing because Zlin only depends on p1 and x. However, the
result is now to be interpreted as the ordinary generating function for unlabelled linear orderings.
Since there is just one of these for each n, we get the geometric series.

Example: The species of permutations. Here we must be clear about how Sn acts on the set
of permutations of [n], which is to say, on itself. It acts by permuting the numbers in the cycle



notation for a permutation. In group-theoretic terms, this means that g sends σ to gσg−1. In other
words, Sn acts on itself by conjugation. Now let’s see how many permutations σ are fixed by g.
We have

gσg−1 = σ if and only if gσ = σg,

that is, if and only if σ commutes with g. Note that in particular, g fixes σ if and only if σ fixes
g. This is an extremely useful fact. For the number of elements σ fixed by g is equal to the
number that fix g, that is, to the stabilizer of g in the action of Sn on itself by conjugation. By the
orbit-stablizer theorem, this number is equal to n!/|C(g)|, where C(g) is the conjugacy class of g,
consisting of all permutations with the same cycle structure as g. Using this, we find

Zperm =
∞∑
n=0

xn

n!

∑
g∈Sn

n!
|C(g)|

p
j1(g)
1 p

j2(g)
2 . . . pjn(g)

n .

In this formula, the n! in numerator and denominator cancel, and |C(g)| is exactly the number of
terms in the sum with a given monomial pj1(g)

1 p
j2(g)
2 . . . p

jn(g)
n . Hence each such monomial occurs

with a net coefficient exactly equal to xn. In short, we have

Zperm =
∞∑
n=0

xn
∑
|λ|=n

pλ1pλ2 · · · pλl
.

This is the ordinary generating function for all partitions λ, counted with weight xnpj11 p
j2
2 · · · , where

n is the size of λ and jk is the number of parts equal to k in λ. Using our familiar techniques for
partition enumeration, we can rewrite this as

Zperm =
∞∏
k=1

1
1− pkxk

.

The first special value is

Zperm(1, 0, 0, . . . ;x) =
1

1− x
.

This is the exponential generating function for permutations. As expected it is the same as the
exponential generating function for linear orderings. Note, however, that the full cycle generating
functions Zlin and Zperm are not the same. This shows very clearly the important point that linear
orderings and permutattions are two different species.

The second special value is

Zperm(1, 1, 1, . . . ;x) =
∏
k

1
1− xk

.

This is the familiar ordinary generating function for partitions. It should also be the ordinary
generating function for unlabelled permutations. Is this correct? Well, an “unlabelled” permutation
is entirely determined by its cycle structure, that is, two permutations are in the same orbit if they
have the same cycle lengths. The cycle lengths form a partition of n, so unlabelled permutations
are nothing but partitions, and the formula checks.

4. Decorated F -structures

We have seen that the two special values ZF (1, 0, 0, . . . ;x) and ZF (1, 1, 1, . . . ;x) have enumerative
meaning, but what about the full cycle generating function itself? The answer to this comes from
the Polya-Redfield theorem. Remember that ZF is the ordinary generating function for the cycle
indices of automorphism groups of unlabelled structures. Now suppose we have a set of “colors”



A, with some symbolic weights assigned, and enumerated by an ordinary generating function G(y).
We use the notation pk[G(y)] = G(yk). Then the Polya-Redfield theorem tells us that

CAut(f)[G(y)] =
def
CAut(f)(G(y), G(y2), . . .)

is the ordinary generating function for C-colorings of the set [n], up to symmetries given by the
automorphism group of f . In other words, it is the ordinary generating function for unlabelled
structures isomorphic to f , with their vertices “decorated” with colors from the set A. Summing
this over all F -structures, with a factor xn to keep track of the size of the vertex set, gives

ZF [G(y)] = ZF (G(y), G(y2), . . . ;x),

and this is the ordinary generating function for all unlabelled vertex-decorated F -structures, with
a weight xnyk if it has n vertices and the coloring contributes weight yk. More generally, the
generating function for the colors can be a weight enumerator G(y1, y2, . . . , yr) in any number of
variables, and then for pk we substitute pk[G(y)] = G(yk1 , y

k
2 , . . . , y

k
r ).

The simplest possibility, but also in some ways the most general, is that the set A consists of r
colors each with its own symbolic variable yi. Then the enumerator of the colors is y1 +y2 + · · ·+yr,
and

pk[y1 + y2 + · · ·+ yr] = yk1 + yk2 + · · ·+ ykr .

This quantity is called the k-th power-sum of the variables yi. This is the reason I have used the
letter p for the variables pk, to stand for “power-sum.” We can summarize the above considerations
as a theorem.

Theorem 3. The special value

ZF [y1 + y2 + · · · ] = ZF (p1(y), p2(y), . . . ;x),

where pk(y) = pk[y1 + y2 + · · · ] is the k-th power-sum, is the ordinary generating function for unla-
belled F -structures decorated with colors on the vertices, and enumerated with weight xnyc11 y

c2
2 · · · ,

where n is the number of vertices and ci is the number that receive color i.

An important point about this theorem is that the “special” value involved is actually a fully
general value. In the theory of symmetric functions one shows that when there are infinitely many
variables yi, the power-sums pk(y) are in effect independent variables. The interpretation of ZF as
an ordinary generating function for decorated unlabelled F -structures therefore involves no loss of
information.

Example: If we take the trivial structure on a set of n elements, decorate the elements with colors
1, . . . , r, and consider this as an unlabelled structure, we have a distribution of n identical items
to r distinct recipients. This is just a multiset of n elements from the r colors. We assign color
i a variable yi. Then the ordinary generating function for multisets of the colors, counted with a
monomial xnyk11 · · · ykr

r , where n is the size of the multiset and ki is the number of copies of color i
in it, should be given by

Ztriv(p1(y), p2(y), . . . ;x).

Using formula (2) for Ztriv, we see that this is equal to

Ω[x(y1 + · · ·+ yr)],

where we define
Ω = ep1+p2/2+p3/3+···,



and the square bracket notation means as usual that pk goes to pk[x(y1 + · · ·+ yr)] = xk(yk1 + · · ·+
ykr ) = xkpk(y). Now notice that in general we have pk[X + Y ] = pk[X] + pk[Y ] for any quantities
X, Y . Hence the exponent in the definition of Ω is additive, and Ω itself is multiplicative:

Ω[X + Y ] = Ω[X]Ω[Y ].

We can use this compute Ω[xy1 + · · ·+ xyr] by computing Ω[xyi] and multiplying. However

Ω[xyi] = e− log(1−xyi) =
1

1− xyi
,

so

Ω[x(y1 + · · ·+ yr)] =
r∏
i=1

1
1− xyi

.

This agrees with the generating function for multisets that we would get by familiar ordinary
generating function methods.

5. Plethysm

Our final topic will be the analog for cycle generating functions of the product and composition
principles for exponential generating functions. It turns out that the stray variable x in the cycle
generating function is an unnecessary nuisance and it is best to get rid of it before proceeding
further. We define the reduced cycle generating function for a species F to be

ẐF (p1, p2, . . .) = ZF (p1, p2, . . . ; 1).

There is no real loss of information in working with ẐF instead of ZF . To see this, note that in
the xn term of ZF , every monomial pj1(g)

1 p
j2(g)
2 . . . p

jn(g)
n has degree n, if we agree to consider pk as

having degree k. If we substitute pk 7→ xkpk in such a monomial, the effect is to multiply it by xn.
This shows that

ZF (p1, p2, . . . ;x) = ẐF (xp1, x
2p2, . . .),

so we can always recover ZF if we know ẐF .
The product principle for cycle generating functions is the same as the familiar one for exponential

generating functions.

Theorem 4. If F = GH is a product structure, then

ẐF = ẐGẐH

(and hence also ZF = ZGZH).

Proof. Recall that a GH structure on [n] consists of an ordered partition of [n] into subsets A1

and A2, with a G structure on A1 and an H structure on A2. To decorate the GH structure is the
same thing as to decorate the G structure on A1 and the H structure on A2 independently. When
we drop the labels, that is, look at Sn orbits, it no longer matters which elements belong to A1

and which to A2: an unlabelled decorated GH structure just consists of an unlabelled decorated G
structure and an unlabelled decorated H structure. These can be chosen independently, and the
product principle is now reduced to the usual one for ordinary generating functions.

What this actually shows is that

ẐF [Y ] = ẐG[Y ]ẐH [Y ]

for any Y . But if we take Y = y1 + y2 + · · · , then pk[Y ] = pk(y), and these power-sums are
algebraically independent for all k. Hence the identity evaluated at Y implies the full identity that
we wanted to prove. �



An interesting feature of this proof is that by using the interpretation of ZF as an ordinary
generating function for decorated unlabelled structures, we have reduced the product principle to
the one for ordinary generating functions. At the same time, since the exponential generating
function for F structures is a special value of ZF , this result implies the product principle for
exponential generating functions.

To give the cycle generating function version of the composition principle, we define a new
operation called plethysm.

Definition Let G and H be formal power series in the variables p1, p2,. . . , and assume that the
constant term of H is zero. The plethysm G ∗H of H into G is defined to by

G ∗H = G(p1 ∗H, p2 ∗H, . . .),
where

pk ∗H = H(pk, p2k, p3k, . . .)
In other words, to plethystically substitute H into G, we substitute pk ∗H for each variable pk in
G, and to compute pk ∗H, we substitute pjk for each variable pj in H.

Lemma 1. The plethysm is related to the bracket operation by the identity

G[H[Y ]] = (G ∗H)[Y ].

Proof. To compute H[Y ] we replace each variable pj in H by pj [Y ], which is defined as the result
of replacing every symbol in Y by its j-th power. To compute G[H[Y ]] we replace each variable pk
in G by pk[H[Y ]]. This is obtained by replacing every symbol in H[Y ] by its k-th power. However,
we could have gotten the same result by replacing each variable pj in H by pjk[Y ] in the first place.
In other words, pk[H[Y ]] = (pk ∗H)[Y ] according to our definition of pk ∗H. Now we substitute
this for each pk in G to obtain (G ∗H)[Y ]. �

Of course, the reason we defined plethysm as we did was to make this lemma work. Thus the
lemma is largely just a matter of notation. Now we are ready for a real theorem.

Theorem 5. If F = G ◦H is a composite structure, then

ẐF = ẐG ∗ ẐH .

Proof. We will prove that
ẐF [Y ] = (ẐG ∗ ẐH)[Y ]

for any Y . This is sufficient to prove the general identity, for the same reason as in the proof of the
product principle. By the Lemma, the right-hand side above is equal to

ẐG[ẐH [Y ]].

We must verify that this is a generating function for the same kind of decorated structures as
ẐF [Y ].

We can interpret ẐG[ẐH [Y ]] as the generating function for unlabelled G structures with their
vertices decorated by “colors” whose ordinary generating function is ẐH [Y ]. However, the latter
is the generating function for decorated unlabelled H-structures. Therefore ẐG[ẐH [Y ]] enumerates
structures consisting of an unlabelled G-structure on a set whose elements are in turn decorated
with unlabelled decorated H-structures.

Now let’s see what an unlabelled decorated G ◦ H structure on a set X looks like. We are to
choose a partition Π of X, a an H-structure on each block of Π, and a G-structure on the set of
blocks of Π. Moreover, we are to decorate the vertices of X, which is the same thing as decorating
the vertices of the various H-structures in the composite structure independently. Removing labels,



we are left with a multiset of unlabelled decorated H-structures, with a G-structure on the elements
of the multiset. But this is the same thing as an unlabelled G-structure on elements decorated by
unlabelled decorated H-structures, which is what ẐG[ẐH [Y ]] enumerates. �

Example: The cycle generating function for the species of set partitions can be computed using
plethysm. Our species is a composite (trivial) ◦ (non-empty set). Previously, we used this to get
the exponential generating function ee

x−1 for set partitions. Here, in place of ex we need to use the
cycle generating function for a trivial species, and in place of functional composition, we need to
use plethysm.

In the notation introduced above, we have

Ẑtriv = Ω = ep1+p2/2+···,

and subtracting the constant term, which counts the trivial structure on the empty set, we have

Ẑnon-empty = Ω− 1.

Hence
Ẑpartition = Ω ∗ (Ω− 1).

Let’s compute some terms of this, keeping track of everything up to degree 4. We have

p1 ∗ (Ω− 1) = Ω− 1 = ep1+p2/2+p3/3+p4/4+··· − 1

p2 ∗ (Ω− 1) = ep2+p4/2+··· − 1

p3 ∗ (Ω− 1) = ep3+··· − 1

p4 ∗ (Ω− 1) = ep4+··· − 1.

Then

Ω ∗ (Ω− 1) = ep1∗(Ω−1)+p2∗(Ω−1)/2+p3∗(Ω−1)/3+p4∗(Ω−1)/4+···

= ep1∗(Ω−1)ep2∗(Ω−1)/2ep3∗(Ω−1)/3ep4∗(Ω−1)/4 · · · · .
Expanding the various exponentials, substituting for pk ∗ (Ω− 1) from the chart above, collecting
terms, and putting back the xn factors for clarity, we find after some work:

Zpartition(p1, p2, . . . ;x) = 1 + x p1 +
x2

2
(
2 p1

2 + 2 p2

)
+
x3

6
(
5 p1

3 + 9 p1 p2 + 4 p3

)
+
x4

24
(
15 p1

4 + 42 p1
2 p2 + 21 p2

2 + 24 p1 p3 + 18 p4

)
+ · · · .

Looking at the x3 term, this tells us for instance that there are 5 labelled partitions of a 3 element
set (the coefficient of the term involving p3

1), and 3 unlabelled ones (setting all pk = 1 in the x3

term). You can easily check by hand that this is correct.
Now let’s apply our two standard specializations to this. Since we are using reduced cycle

generating functions, in order to recover the exponential generating function for set partitions we
should set p1 = x and pk = 0 for all k > 1. You can check from the definition of plethysm
that making this substitution in F ∗ G is equivalent to first applying it to each of F and G, then
composing the resulting functions F (x) and G(x). In other words, the plethysm principle for cycle
generating functions reduces under this substittution to the composition principle for exponential
generating functions. In particular, our cycle generating function Ω ∗ (Ω − 1) for set partitions
reduces to the exponential generating function ee

x−1 that we knew before.
On the other hand, to get the ordinary generating function for unlabelled structures we want to

set pk = xk. From the definitions we see that this substitution sends F ∗G to F (G(x), G(x2), . . .),
where G(x) is shorthand for G(x, x2, . . .), that is, for the ordinary generating function for the



unlabelled structures counted by G. In the present example, Ω− 1 is the cycle generating function
for the trivial non-empty species, so setting pk = xk in Ω−1 gives the ordinary generating function
G(x) = x/(1− x) for the unlabelled trivial non-empty species.

Now let’s calculate

Ω(G(x), G(x2), . . .) = ex/(1−x)+(1/2)x2/(1−x2)+···.

The expression in the exponent is
∞∑
n=1

1
n

∞∑
k=1

xkn =
◦w∑
k=1

∞∑
n=1

xkn

n

=
∞∑
k=1

ln
(

1
1− xk

)
.

Exponentiating this gives

Ω(G(x), G(x2), . . .) =
∞∏
k=1

1
1− xk

as the ordinary generating function for unlabelled set partitions. Since an unlabelled partition of an
n element set is merely an integer partition of n, this agrees with the ordinary generating function
for integer partitions, as expected.


