
Math 113, Summer 2015 Prof. Haiman

A guide to field theory

For the last part of the course we will be studying fields and some classical applications
of field theory, such as to prove that that it is not possible to trisect an arbitrary angle with
straightedge and compass, and that there is no formula for the roots of a polynomial of degree
five or more, analogous to the familiar formula for the roots of a quadratic polynomial.

Most of the theory that we will need is covered in Goodman’s text, although I will add a
few things, mainly about finite fields (see the separate set of notes on this subject) and the
impossibility of angle trisection. Goodman treats the subject more comprehensively than
we will have need or time for. In these notes, I will outline the parts of the subject that I
would like you to learn, and where to find them in Goodman.

Here and there I will also mention simplifications or alternative approaches to what you
will find in the text.

1. Vector spaces

All the familiar operations of vector and matrix algebra, such as solving a system of linear
equations Ax = 0 by row-reducing the matrix A, work for matrices and vectors with entries
in any field K.

We do require that K be a field, and not just a commutative ring with identity, because
it is essential to be able to divide by non-zero scalars. For example, just to solve a single
linear equation a x = b in one variable x, you need to be able to divide by a.

For a review of vector and matrix algebra you might want to read Goodman Appendix
E.1-2.

The definition of an abstract vector space V over any field K and some fundamental
examples are given in Goodman 3.3.1-3 and 3.3.6-7.

The definition and properties of a basis of V , and the dimension dim(V ) if V is finite-
dimensional, are in Goodman 3.3.15-28.

You will notice that Goodman proves Proposition 3.3.25 using the fact that if C is a matrix
with more columns than rows, then the vector equation C a = 0 has non-zero solutions a.
This should be familiar to you in the case when K is the field of real numbers, but it is
equally valid for other fields.

One important point which Goodman skips over is that a subset S of V is a basis if and
only if every element of V can be expressed uniquely as a linear combination of elements of
S. Exercise: prove this.

The above is all that we will need from linear algebra.

2. Field extensions

Carefully read all of Goodman 7.3 for the definition and basic properties of field extensions
K ⊆ L. We will be studying the theory of finite extensions, which are always algebraic.

The dimension dimK(L) and the formula dimK(M) = dimK(L) dimL(M) for K ⊆ L ⊆M
(Goodman 7.3.1) will be important for us.
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The minimal polynomial f(x) ∈ K[x] of an element α ∈ L, and the description of the
subfield K(α) ⊆ L, isomorphic to K[x]/(f(x)), will also be especially important (Goodman
7.3.5-8).

3. Solution of the cubic, and splitting fields of polynomials in C

In 7.2, Goodman explains how to solve a cubic equation, after reducing it to the special
form x3 + px+ q = 0.

In 7.4, he works out the description of field extensions K ⊆ L, where K is a subfield of C
containing the coefficients of a cubic f(x) = x3 + px + q = 0, and L = K(α1, α2, α3) is the
extension of K generated by the three complex roots αi of f(x), called the splitting field of
f(x) over K.

In 7.5, he outlines the general picture for the splitting field in C of a polynomial f(x) with
coefficients in a subfield K of C.

In class I will go over the example of the cubic equation, as discussed in Goodman 7.2 and
7.4, along with other examples, to motivate and illustrate the theory we will be developing.

You should read 7.2 and 7.4 in full.
You can skip all proofs and many of the intermediate results in 7.5. It will be enough

to understand the statements of Theorem 7.5.1, 7.5.7-9, and 7.5.11, and how they apply in
examples 7.5.12-14 and any others we might discuss in class.

4. Impossibility of angle trisection

This topic is not in Goodman, so I will explain it briefly here (and in class). We will only
need the material in Goodman 7.3 for this.

We define a real number to be constructible if it is the x or y coordinate of a point in
the plane constructible by straightedge and compass, starting with nothing but two marked
points: one at the origin (0, 0) and one on the x axis at (1, 0), which serve to establish a unit
of length.

For example, since we can construct a unit square, and mark off a segment on the x-axis
congruent to its diagonal, the number

√
2 is constructible.

There are only three ways to construct new points: intersect two lines, a line and a circle,
or two circles. The only lines we can construct are those passing through two constructible
points, and the only circles are those centered on a constructible point and having con-
structible radius. You can verify, by working out the equations for the intersection points of
two lines, or a line and a circle, or two circles, that every new number produced by these con-
structions is a solution of a quadratic equation whose coefficients are previously constructed
real numbers.

This shows that every constructible real number is contained in a finite iterated quadratic
extension of Q, that is, a subfield K ⊆ R such that there is a tower of intermediate fields

Q = K0 ⊆ K1 ⊆ · · · ⊆ Km = K

in which each Ki+1 has the form Ki(αi), where αi is a root of a quadratic equation with
coefficients in Ki. Then dimKi

(Ki+1) = 2 for all i, so dimQ(K) = 2m. If β is a constructible
real number, then Q(β) is a subfield of a field K as above. Hence dimQ(Q(β)), which is the
degree of the minimal polynomial of β over Q, divides 2m, and so is itself a power of 2.



(It can be shown, conversely, that all elements of any iterated quadratic extension of Q in
R are constructible. For this one has to exhibit geometric constructions for the arithmetic
operations and square roots. We won’t need this.)

Since we can construct an equilateral triangle, we can construct two lines meeting at at
angle of 2π/3 = 120◦. If there were a construction to trisect an angle, we could then use
it to construct an angle of 2π/9, which would imply that the real number 2 cos 2π/9 is
constructible.

To prove that angle trisection is impossible, it will therefore suffice to show that the
minimial polynomial of 2 cos 2π/9 over Q has degree 3.

To this end, let ω = e2πi/9, so that 2 cos 2π/9 = ω + ω−1. Since ω9 = 1, we see that ω is a
root of x9 − 1 = 0. The latter polynomial factors as

x9 − 1 = (x3 − 1)(x6 + x3 + 1).

Since ω3 6= 1, ω must be a root of the second factor, so it satisfies ω6 +ω3 + 1 = 0. Dividing
by ω3, we get

ω3 + ω−3 + 1 = 0,

or
(ω + ω−1)3 − 3(ω + ω−1) + 1 = 0.

This shows that 2 cos 2π/9 = ω + ω−1 is a root of the polynomial x3 − 3x+ 1. To complete
our argument we need only show that this last polynomial is irreducible in Q[x]. Since it
is a cubic polynomial, it suffices to show that it has no rational root. By the rational root
test, the only possible rational roots are ±1. But neither of these is a root, so x3− 3x+ 1 is
irreducible.

Exercise: Show that x3 − 3x + 1 has three real roots, equal to 2 cos 2π/9, 2 cos 4π/9 and
2 cos 8π/9.

5. Splitting fields, automorphisms, and Galois theory

In Goodman Chapter 7 we encountered the notion of the splitting field in C of a polynomial
f(x) with coefficients in a subfield K of C. These concepts apply in a more general setting.

Given any field K and a polynomial f(x) ∈ K[x], we can prove that there is an algebraic
extension K ⊆ L such that f(x) factors into linear factors in L[x]—that is, L contains a
complete set of roots of f(x)—and the roots of f in L generate L as extension of K. This
extension L is called the splitting field of f(x) over K.

Sections 9.1-5 of Goodman discuss the theory of splitting fields and their automorphism
groups, leading to the fundamental theorem of Galois theory (Goodman 9.5.4).

We will need much but not all of the material in these sections.

In 9.1, we only need Proposition 9.1.1.

Section 9.2 discusses the existence of splitting fields and how to construct them, their
uniqueness up to isomorphism, and the construction of specific isomorphisms and automor-
phisms in appropriate circumstances. Everything in 9.2 is important for us.

Section 9.3 discusses criteria for a polynomial to have multiple roots. You may already
know that a polynomial f(x) with real coefficients has distinct roots (including complex
roots) if and only if f(x) and its derivative f ′(x) are relatively prime.



In Goodman Exercises 9.3.1-5 you will work out the corresponding criterion for polyno-
mials over any field. (The phrase “if Df(x) is not identically zero, then” in 9.3.5 could be
omitted, since if Df(x) = 0, then the gcd of f(x) and Df(x) is f(x).)

The rest of 9.3 discusses some applications of the criterion in Exercise 9.3.5. The main
point is that if K has characteristic zero, or if K is finite, then an irreducible polynomial
over K always has distinct roots in any extension of K. This includes most fields K that
will be of interest to us.

Section 9.4 discusses the automorphism group AutK(L) of a splitting field K ⊆ L. We
will need everything in this section except maybe Corollaries 9.4.18-19.

There is a mistake in Goodman’s proof of Proposition 9.4.1: it should refer to Proposition
9.2.4 instead of Corollary 9.2.5. Or, better, study the proof of Proposition 9.4.2 first, and then
notice that Proposition 9.4.1 is the special case of 9.4.2 when M = K(α) and M ′ = K(β).

The most subtle, but also the most fundamental, result in 9.4 is Theorem 9.4.13. Here is
a slightly different proof which you might find simpler and more conceptual.

The first part is the same as in Goodman: we list the roots β1, . . . , βr of f(x) in L and
consider the tower of subfields

K = M0 ⊆M1 ⊆ · · · ⊆Mr = L

in which Mi = Mi−1(βi). We will prove that if β is a root of f(x) in L, then for any
subfields K ⊆ M ⊆ M(β) ⊆ L, every element of M(β) fixed by AutK(L) belongs to M . It
follows that if Fix(AutK(L)) ⊆ Mi+1, then Fix(AutK(L)) ⊆ Mi. Since we obviously have
Fix(AutK(L)) ⊆ Mr, we can use this repeatedly to conclude that Fix(AutK(L)) ⊆ M0. In
other words, Fix(AutK(L)) = K, which is what we wanted to prove.

The second part is to prove that every element of M(β) fixed by AutK(L) belongs to M .
I will do this a bit differently than Goodman does. Since AutM(L) ⊆ AutK(L), it is enough
to prove that every element of M(β) fixed by AutM(L) belongs to M . In other words, the
problem really only concerns the extension M ⊆M(β) ⊆ L and the group AutM(L).

Let N = M(β)∩Fix(AutM(L)). We have M ⊆ N ⊆M(β) and want to show that M = N .
Let p(x) be the minimal polynomial of β over M , and q(x) its minimal polynomial over N .

Since β is a root of f(x), p(x) is an irreducible factor of f(x) in M [x], so p(x) is separable.
Let l = deg(p(x)) = dimM(M(β)). Since L is the splitting field of f(x) over M as well as over
K, p(x) has l distinct roots α1, . . . , αl in L, one of which is β. By 9.4.4 (b) (applied to M ⊆ L
rather than to K ⊆ L), AutM(L) acts transitively on the αi. Since q(x) has coefficients fixed
by AutM(L) and β is a root of q(x), every αi is a root of q(x). Hence the degree of q(x),
which is equal to dimN(M(β)), is at least l. In other words, dimN(M(β)) ≥ dimM(M(β)).
But since dimM(M(β)) = dimM(N) dimN(M(β)), this implies that dimM(N) = 1, that is,
M = N .

In 9.5, we only need 9.5.1-4. Proposition 9.5.1 is known as the Primitive Element Theorem.
It is used here to prove Proposition 9.5.3, which in turn is used, together with results from
Section 9.4, to prove Theorem 9.5.4.

The main results in Galois theory are Theorem 9.4.15, Corollary 9.4.16, Proposition 9.4.17,
and Theorem 9.5.4.

6. Unsolvability of the quintic equation



I am more interested in having you appreciate this topic as a demonstration of the power
of Galois theory than in your following every technical detail. For this reason, I will first
give you an outline of the general ideas before pointing you to the specifics in Goodman.

It will be helpful to begin by thinking about the familiar formula

−b±
√
b2 − 4ac

2a
for the roots of a quadratic equation

a x2 + b x+ c = 0.

One way to view the symbols a, b and c here is that they stand for complex numbers, which
we specify each time we want to use the formula. To address the question of whether such
formulas exist for higher degree polynomials, however, it is more useful to take a different
point of view, and regard the symblols a, b, c as abstract indeterminates, like the symbol x
in a polynomial p(x).

In other words, we consider the field of rational functions K = C(a, b, c), the fraction field
of the polynomial ring C[a, b, c] in three variables. Then f(x) = ax2 + bx+ c is a polynomial
over K, that is, an element of K[x]. The expression ∆ = b2− 4ac is an element of K, but it
is not the square of an element of K. Thus p(z) = z2−∆ has no root in K, and is therefore
irreducible (since it has degree 2). We can introduce a square root of ∆ by forming the

extension E = K[z]/(p(z)) = K(
√

∆). The formula

−b±
√
b2 − 4ac

2a
=
−b±

√
∆

2a

now stands for either of two elements (depending on the ± sign) α1, α2 ∈ E, which are, of
course, the roots of f(x) in E.

Thus E = K(
√

∆) is the splitting field of the generic quadratic polynomial f(x) = ax2 +
bx + c over K = C(a, b, c). Splitting fields always exist, but in this case, the quadratic
formula allowed us to construct it in a special way: namely, by adjoining a square root of
the element ∆ ∈ K.

We can interpret Cardano’s formulas for the roots of a cubic equation, worked out in
Goodman 7.2, in a similar manner. We might take the generic cubic to be ax3 +bx2 +cx+d,
but for the problem of finding the roots we can always simplify first, as in Goodman 7.2, to
the form

f(x) = x3 + p x+ q.

We now regard this as a polynomial over the field of rational functions K = C(p, q). Note
that this is quite different from the point of view taken in Goodman 7.4, where p and q were
complex numbers and K was a subfield of C containing them. Now C is a subfield of K
instead!

In Cardano’s formulas, we first introduce the square root

√
∆, where ∆ =

q2

4
+
p3

27
.

Then we introduce a cube root

A =
3
√
B, where B = −q

2
+
√

∆.



After this, the roots of f(x) are given, as in Goodman 7.2, by

α1 = A− p

3A
, α2 = ωA− p

3ωA
, α3 = ω2A− p

3ω2A
,

where ω = e2πi/3 (note that our field K contains the complex number ω to begin with).

In other words, the field E = K(
√

∆)( 3
√
B) is the splitting field of the generic cubic

f(x) = x3 + px+ q over K = C(p, q). Again, the splitting field always exists, but Cardano’s
formulas have allowed us to construct it by adjoining first a square root and then a cube
root to K.

A formula for the roots of a polynomial equation involving only arithmetic operations,
radicals (meaning n-th roots), and perhaps some specific complex numbers such as the ω
in Cardano’s formulas is called a solution of the equation by radicals. Besides the familiar
formula for the quadratic equation and Cardano’s formulas for the cubic equation, there is
also a known solution of the general fourth degree equation by radicals.

We shall use Galois theory to prove that there is, however, no solution by radicals of the
general quintic (degree 5) equation

x5 + a x4 + b x3 + c x2 + d x+ e = 0

(which we have taken to be monic for simplicity and without loss of generality). In the
process we will also see the natural explanation for the fact that 5 is the smallest degree in
which no solution by radicals exists.

From our discussion so far we already know how to begin. Take K = C(a, b, c, d, e), let
f(x) ∈ K[x] be the generic quintic

f(x) = x5 + a x4 + b x3 + c x2 + d x+ e,

and let E be the splitting field of f(x) over K. If the quintic were solvable by radicals, it
would mean that E, or maybe some larger extension K ⊆ E ⊆ L, can be constructed from
K in stages, where at each stage we adjoin an n-th root of some element. In other words,
we would have a tower of extensions

(1) K = K0 ⊆ K1 ⊆ · · · ⊆ Kr = L,

with Ki+1 = Ki( ni
√
αi) for some αi ∈ Ki and positive integer ni, for each i. We have only

required E ⊆ L, rather than E = L, to allow for the possibility that there might be a
solution by radicals which gives some extraneous solutions in addition to the roots of f(x).
Our conclusions will imply that not even this is possible.

The steps to complete the proof are as follows. By definition, E is the splitting field of
a polynomial f(x) over K. Since our fields have characteristic zero, f(x) is separable, so
K ⊆ E is a Galois extension.

The first thing to prove is that the Galois group AutK(E) is the full permutation group
S5 acting on the five roots of f(x) in E. More generally, the Galois group of any generic
polynomial of degree n is the full permutation group Sn of its n roots in a splitting field.

Goodman proves this in 9.6 and 9.7 (Theorem 9.7.1), but there is an easier way, which
I will explain briefly. The idea is to prove by induction that dimK(E) = n!. Then, since
|AutK(E)| = dimK(E) and AutK(E) is a subgroup of Sn, it will follow that AutK(E) = Sn.



The degree n generic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

is irreducible in C[a0, . . . , an−1, x] since it is linear in a0. By Gauss’s Lemma, it follows that
f(x) is irreducible over K = C(a0, . . . , an−1). Adjoining a root α of f(x) to K therefore gives
an extension K ⊆ K(α) with dimK(K(α)) = n. The polynomial f(x) factors over K(α) as
f(x) = (x−α)g(x), for a polynomial g(x) = xn−1 + bn−2x

n−2 + · · ·+ b1x+ b0 with coefficients
bi ∈ K(α). Our splitting field E is also the splitting field of g(x) over K(α). If we verify that
g(x) is again a generic polynomial, then we will have dimK(α)(E) = (n − 1)! by induction,
and therefore dimK(E) = dimK(K(α)) dimK(α)(E) = n · (n− 1)! = n!.

To prove that g(x) is generic we need to show that K(α) is isomorphic to a field of rational
functions C(b0, . . . , bn−1, α). We can construct this isomorphism by working out formulas for
the bi in terms of the ai and vice versa, as I will do in class.

Next we observe that if M contains C, and n
√
α is an n-th root of some α ∈M , then all the

n-th roots of α are n
√
α, ω n
√
α, . . . , ωn−1 n

√
α, where ω = e2πi/n. The extension M ⊆ M( n

√
α)

is therefore the splitting field of xn−α over M , so it is Galois. If gk ∈ AutM(M( n
√
α)) sends

n
√
α to ωk n

√
α, then gk(ω

j n
√
α) = ωj+k n

√
α. This gives gkgj = gj+k and shows that the Galois

group AutM(M( n
√
α)) is abelian.

A more general discussion of radical extensions M ⊆ M( n
√
α) can be found in Goodman

10.4-5, but we will not need it. The simpler observations in the paragraph above will do.
The remaining steps are the same as in Goodman 10.1-3 and 10.6.
The extension K ⊆ L is not necessarily Galois, but we can always find a larger extension

K ⊆ L ⊆ L′ which is Galois, and is still given by a tower of radical extensions as in (1).
This is Goodman, Lemma 10.6.3. The basic idea is that every time we want to construct
an extension M( n

√
α), we should not just adjoin an n-th root of α, but of every root of

the minimal polynomial p(x) of α over K, which gives the splitting field of the polynomial
p(xn) ∈ K[x] over M . The resulting extension will then be Galois over K if M was.

Replacing L with L′, we can now assume that L is Galois over K. Using the fundamental
theorem of Galois theory and the tower of intermediate fields (1), we conclude as in Goodman
10.6.4 that the Galois group G = AutK(L) contains a tower of subgroups

{e} = G0 ⊆ G1 ⊆ · · · ⊆ Gr = G

with each Gi normal in Gi+1 and Gi+1/Gi abelian for each i. Such a group G is said
to be solvable (Goodman, Definition 10.1.4). Our original splitting field E of f(x) is an
intermediate extension K ⊆ E ⊆ L, Galois over K. This implies that its Galois group
AutK(E) is a quotient group G/N of G.

In class we will prove Goodman, Exercise 10.2.6: every quotient of a solvable group is
solvable. We conclude that if f(x) is solvable by radicals, then the Galois group AutK(E)
of its splitting field must be a solvable group. This is the origin of the term “solvable” for
groups.

To complete the proof that the general quintic is not solvable by radicals, it only remains
to show that the symmetric group S5 is not solvable. This follows because (i) the only normal
subgroups of S5 are {e}, A5 and S5, and (ii) A5 is non-abelian and simple (has no proper
non-trivial normal subgroup). This is Goodman, 10.3.2, 10.3.4, and Exercise 10.3.6.



A final remark: S2, S3 and S4 are solvable (A4 is non-abelian, but not simple because it
has a normal subgroup with four elements). This explains why there are formulas for the
solution by radicals of general polynomial equations of degrees 2, 3 and 4, but not 5.


