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Notes on finite fields

1. The order of a finite field

Recall (Goodman 6.4.9) that the subring generated by 1 in any integral domain R is
isomorphic either to Z, in which case we say R has characteristic zero, or to Zp, in which
case we say R has characteristic p. If F is a field of characteristic zero, then F is clearly
infinite. In fact, since F is a field, it not only contains a copy of Z, but a copy of the fraction
field Q of Z.

A finite field F must therefore have characteristic p for some prime p, that is, the subring
of F generated by 1 is isomorphic to Zp. Note that this subring is already a subfield. We
can identify it with Zp and think of Zp ⊆ F as a field extension.

In particular, F is a vector space over Zp, and since F is finite, d = dimZp(F ) is finite.
Then F is isomorphic as a vector space (and as an abelian group, but not as a ring!) to
(Zp)

d. Hence F has pd elements.
Our main goal in these notes will be to prove

Theorem 1.
(i) For every prime power q = pd, there exists a finite field F(q) of order q.

(ii) F(q) is unique up to isomorphism.

(iii) F(q) can be constructed as Zp(α), where α is a root of an irreducible polynomial f(x)
of degree d in Zp[x].

In the process we will also learn something about the structure of the finite fields F(q),
and use this knowledge to discover an algorithm for testing whether a polynomial f(x) over
Zp is irreducible in Zp[x].

2. The Frobenius automorphism

Proposition (Goodman 9.3.3). If F is a field of characteristic p, the map Φ: F → F
given by Φ(x) = xp, called the Frobenius homomorphism, is a ring homomorphism. The
Frobenius homomorphism is always injective. If F is finite, then Φ is bijective, that is, it is
an automorphism.

Proof. It is clear that Φ(xy) = xpyp = Φ(x)Φ(y). We also need to prove that Φ(x + y) =
Φ(x) + Φ(y). By the binomial theorem,

(1) Φ(x+ y) = (x+ y)p =

p∑
k=0

(
p

k

)
xkyp−k.

Recall that (
p

k

)
=

p!

k!(p− k)!
.

For 0 < k < p, k! and (p−k)! are products of positive integers less than p. Hence p does not
divide the denominator in the above fraction. Since p divides the numerator, we see that p
divides

(
p
k

)
. Bearing in mind that p z = 0 for every element z in a field of characteristic p,
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we see that the terms for 0 < k < p on the right hand side in (1) are all zero. The remaining
terms, for k = 0 and k = p, are xp and yp. This gives

Φ(x+ y) = (x+ y)p = xp + yp = Φ(x) + Φ(y).

We have now shown that Φ is a ring homomorphism. It is not zero, since Φ(1) = 1, so
its kernel is an ideal I ⊂ F , I 6= F . But since F is a field, the only such ideal is I = {0}.
Hence Φ is injective. (This argument actually shows that every unital ring homomorphism
φ : F → R from a field to any ring with identity is injective.)

If F is finite, then Φ, being an injective map from F to F , is also surjective. �

We will now prove part (i) of Theorem 1, that for every prime power q = pd, a finite field
of order q exists.

Given q = pd, let F be the splitting field (Goodman 9.2.3) over Zp of the polynomial
P (x) = xq−x in Zp[x]. Since p divides q, the formal derivative of P (x) is P ′(x) = −1, which
is (obviously) relatively prime to P (x). By the derivative criterion (Goodman 9.3.5), P (x)
has no multiple roots in any extension field of Zp. In particular, P (x) has q distinct roots in
its splitting field F .

For an element α ∈ F to be a root of P (x) means that αpd = α, or, since αpd = Φd(α),
that the d-th power Φd of the Frobenius automorphism fixes α.

Since F is generated by roots of P (x), this implies that Φd fixes every element of F . In
other words, every element of F is a root of P (x). Since P (x) has q roots in F , this shows
that |F | = q.

Now we prove part (ii) of Theorem 1, that all finite fields of order q are isomorphic. We
know (Goodman 9.2.5) that the splitting field of P (x) over Zp is unique up to isomorphism,
but we still need to show that if E is another field of order q, then E is a splitting field for
P (x).

So, suppose |E| = q, without assuming in advance that E is a splitting field for P (x). The
multiplicative group E× = E \{0} has order q−1, so by Lagrange’s Theorem, every x ∈ E×
satisfies xq−1 = 1, and consequently xq = x. But of course x = 0 also satisfies xq = x. This
shows that every element of E is a root of P (x) = xq − x. Since |E| = q, it follows that E
is a splitting field for P (x).

From now on we write F(q) for the splitting field of P (x), which we have just shown is the
unique finite field of order q, up to isomorphism.

To prove part (iii) of Theorem 1, we just have to show that F(q) can be generated over
Zp by a single element α. Then by the basic theory of field extensions, we have F(q) =
Zp(α) ∼= Zp[x]/(f(x)), where f(x) ∈ Zp[x] is the minimal polyonomial of α, which will be a
polynomial of degree d = dimZp(F(q)).

It follows from the structure theorem for finite abelian groups that the multiplicative group
F× of any finite field is cyclic. This is shown in Goodman, Theorem 3.6.25. I’ll remind you
what the essential point there is. Since F× is a finite abelian group, it has an invariant factor
decomposition F× ∼= Zn1 × Zn2 × · · · × Znk

, where each ni divides the one before. Then
every element x ∈ F× satisfies xn1 = 1. However, since F is a field, the equation xn1 − 1 = 0
cannot have more than n1 roots, giving |F×| ≤ n1. But |F×| = n1 · · ·nk, so this implies that
F× has just one factor in its invariant factor decomposition, that is, F× is cyclic.



Now let α ∈ F be a generator of F× as a cyclic group. Then α also generates F as an
extension of Zp.

Just to be clear, I should point out that the above is just one possible way to find a
generator of F(q) over Zp. There are often other elements α such that F(q) = Zp(α), but
α does not generate the group F(q)×. For example, in F(9), we have F(9)× ∼= Z8, which
has four elements that generate it as a cyclic group. But since dimZ3 F(9) = 2, the only
subfields of F(9) are itself and Z3 = F(3). Hence any element α ∈ F(9) which is not in Z3 is
a generator. There are six such elements, but only four of them are generators of F(9)×.

3. Extensions of finite fields

Let us now work out for which q and r there can be an extension of finite fields F(r) ⊆ F(q).
Of course both fields must have the same characteristic, so q and r must be powers of the

same prime, say q = pd and r = pe. Also, since dimF(r)(F(q)) = dimZp(F(q))/ dimZp(F(r)) =
d/e, we must have e dividing d.

We will now prove that these conditions are sufficient, that is, if e divides d then F(pd) has
a subfield E of order pe, and moreover this subfield is unique. (We know that E is unique up
to isomorphism, being isomorphic to F(pe), but that is not sufficient to conclude that F(pd)
has only one such subfield E.)

For this we consider the polynomials P (x) = xq−x = xp
d−x and Q(x) = xr−x = xp

e−x
in Zp[x]. We will show that if e divides d, then Q(x) divides P (x), or in other words,
xq − x belongs to the ideal (xr − x) ⊆ Zp[x]. Let d = k e, so q = rk. In the quotient ring

Zp[x]/(xr − x) we have xr ≡ x and therefore xr
2

= (xr)r ≡ xr ≡ x, xr
3

= (xr
2
)r ≡ xr ≡ x,

and so on. In particular, xq ≡ x, which means that xq − x ∈ (xr − x).
Now, since F(q) is a splitting field of P (x), and Q(x) is a factor of P (x), F(q) contains

r roots of Q(x), that is, it contains a splitting field E of Q(x), which we have already seen
is isomorphic to F(r). Furthermore, any subfield E ′ ⊆ F(q) of order r is a splitting field
of Q(x) and therefore contains all the roots of Q(x) in F(q). In other words, E ⊆ E ′, and
therefore E = E ′ since |E| = |E ′| = r. This shows that E is unique.

Looking ahead a bit, the picture we have just worked out can be understood nicely in
terms of Galois theory. Since F(q) is the splitting field of the separable polynomial P (x)
over Zp, the extension Zp ⊆ F(q) is a Galois extension.

The Frobenius automorphism Φ is an element of the Galois group G of F(q) over Zp. Its
fixed field consists of the roots of the equation xp − x = 0 in F(q). But this equation has
only p roots, so the fixed field of Φ, or of the cyclic subgroup 〈Φ〉 ⊆ G, is just Zp. By the
Galois correspondence, this implies that G = 〈Φ〉.

In other words, the Galois group G of F(q) over Zp is cyclic of order d (where q = pd),
and generated by Φ. Now G ∼= Zd has one subgroup for each divisor e of d, namely the
cyclic subgroup generated by Φe. These subgroups are in one-to-one correspondence with
the subfields of F(q): specifically, the fixed field of the subgroup 〈Φe〉 is the unique subfield
E ⊆ F(q) of order pe.

4. Irreducibility of polynomials over Zp

Part (iii) of Theorem 1 implies that there exist irreducible polynomials in Zp of every
degree d > 0. Actually, we can say much more:



Proposition. For q = pd, the polynomial P (x) = xq − x is exactly the product of all monic
irreducible polynomials f(x) in Zp[x] of degree dividing d.

Proof. Since P (x) does not have repeated roots, it is a product of distinct irreducible factors,
which we can take to be monic, since P (x) is monic. Since the roots of P (x) in its splitting
field F(q) are all the elements of F(q), the irreducible factors are precisely the minimal
polynomials of elements of F(q). In particular, their degrees are the dimensions over Zp of
subfields E ⊆ F(q), so they divide d.

Conversely, if f(x) ∈ Zp is irreducible of degree e dividing d, then it has a root in F(pe) ∼=
Zp[x]/(f(x)). We saw in the previous section that that F(pe) is isomorphic to a subfield of
F(q), so f(x) has a root in F(q), and is therefore an irreducible factor of P (x). �

Using this proposition, we can determine the exact number of irreducible polynomials of
each degree in Zp[x]. For d = 1, P (x) = xp − x must have p irreducible factors all of degree
1, which are of course just the polynomials x − a for each of the p residue classes a ∈ Zp.

For d = 2, P (x) = xp
2 − x has the p linear factors we just found, together with (p2 − p)/2

quadratic factors, since its total degree is p2. Hence there are (p2 − p)/2 distinct monic
irreducible quadratic polynomials over Zp, for every prime p. In the case p = 2, we have
(22−2)/2 = 1. Of the four monic quadratic polynomials in Z2[x], the unique irreducible one
is x2 + x+ 1, since the other three have roots in Z2.

Continuing in this manner, we find that for d = 3, P (x) must have p linear factors and
(p3 − p)/3 factors of degree 3; for d = 4, it must have the p linear factors and (p2 − p)/2
quadratic factors that we already discovered, together with (p4 − p2)/4 factors of degree 4,
and so on.

Another, more important, application of the above proposition is to test whether a given
polynomial f(x) ∈ Zp[x] is irreducible. Suppose the degree of f(x) is d. If it is not irreducible,
f(x) must have an irreducible factor g(x) of degree at most d/2. Then g(x) is a factor of
xp

e − x for some e ≤ d/2, so we can discover whether f(x) is irreducible by computing its
gcd with each of these polynomials. If f(x) turns out to relatively prime to xp

e − x for all
e ≤ d/2, then it is irreducible; otherwise f(x) is reducible.

Note that, although the degree pe of xp
e−x might be quite large, the first step in computing

gcd(f(x), xp
e − x) is to find the remainder of xp

e − x modulo f(x). This remainder is a
polynomial of degree less than d, easily computed by starting with x and taking repeated
p-th powers modulo f(x).

Example. We’ll test f(x) = x4 + x + 2 for irreducibility in Z3[x]. It has no root in Z3[x],
hence no linear factor, so if f(x) is reducible it must be a product of quadratic factors, and
therefore have a common divisor with x9 − x (here 9 = p2). Modulo f(x) (and reducing all
coefficients modulo 3) we have x4 ≡ −x+ 1, x8 ≡ x2− 2x+ 1 ≡ x2 +x+ 1, x9 ≡ x3 +x2 +x,
and x9− x ≡ x3 + x2. Therefore gcd(f(x), x9− x) = gcd(f(x), x3 + x2). Now x3 + x2 factors
as (x+ 1) x2, and we already saw that f(x) has no linear factors, so f(x) is relatively prime
to x3 + x2. It follows that x4 + x+ 2 is irreducible in Z3[x]. Note that this also implies that
x4 + x+ 2 is irreducible in Z[x], and therefore in Q[x], by Gauss’ Lemma.


