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Notes on Euler’s function φ(n)

For each positive integer n, Euler’s function φ(n) is defined to be the number of positive
integers k less than n which are relatively prime to n.

For example, of the positive integers less than 12, four are relatively prime to 12, namely
1, 5, 7, and 11. Therefore φ(12) = 4.

The purpose of these notes is to discuss some properties of φ(n). The same topics are
covered in Section 1.9 of Goodman’s book, but I prefer a different and I think somewhat
simpler approach.

Before reading these notes, you will need to read Sections 1.6 and 1.7 of Goodman. I
will use the same notation as he does for congruence, residue classes, and the system Zn of
residue classes, with its operations of addition and multiplication modulo n. We will make
use of the Chinese Remainder Theorem, which is Proposition 1.7.9 in Goodman.

1. Multiplicative inverses in Zn
Recall that each residue class [a] in Zn has a unique representative with a in the range

0 ≤ a < n. We will begin by showing that the classes [a] which have a multiplicative inverse
in Zn are exactly those for which a is relatively prime to n (this is Proposition 1.9.9 in
Goodman).

First, suppose a is relatively prime to n. Since a and n are relatively prime, there are
integers s and t such that 1 = sa + tn. Then sa ≡ 1 (mod n), which means [s][a] = [1] in
Zn, so [s] is the required inverse.

For the converse, suppose a is not relatively prime to n. Let d = gcd(n, a). Then d > 1,
so l = n/d is a positive integer less than n, and therefore [l] 6= [0] in Zn. Now la = n(a/d) is
a multiple of n, since d divides a, so [l][a] = [0] in Zn. If [a] had a multiplicative inverse [b]
we could multiply on both sides by [b] to get [l] = [0] in Zn, a contradiction.

I will use the notation Z×
n for the set of residue classes [a] in Zn which have multiplicative

inverses. We have just seen that Z×
n consists of those classes [a] for which a is relatively

prime to n. The cardinality of the set Z×
n is therefore equal to the number of integers a in

the range 0 ≤ a < n which are relatively prime to n. But 0 is not relatively prime to n
(why not?), so the cardinality of Z×

n is the number of positive integers less than n which are
relatively prime to n. In other words, φ(n) = |Z×

n |. This fact is the reason why the function
φ(n) is important.

2. A formula for φ(n)

Theorem. Let the prime factorization of n be n = pe11 · · · p
ek
k . Then

(1) φ(n) =
k∏
i=1

pei−1
i (pi − 1)

Example: the prime factorization of 12 is 22 · 3. According the formula in the theorem,
we have φ(n) = 21(2− 1) · 30(3− 1) = 4, in agreement with what we found before.
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We will prove (1) in two steps. First, we will show that φ(n) = pe−1(p− 1) if n = pe is a
power of a prime.

Second, we will use the Chinese Remainder Theorem to show that if m and n are relatively
prime, then φ(mn) = φ(m)φ(n). This implies (by induction on k) that if m1, . . . ,mk are
pairwise relatively prime, then φ(m1 · · ·mk) = φ(m1) · · ·φ(mk).

Formula (1) will then follow, because if n = pe11 · · · p
ek
k , then the factors mi = peii are

pairwise relatively prime, and φ(mi) = φ(peii ) = pei−1
i (pi − 1).

Now let us consider the case n = pe. Since p is the only prime factor of n, a number a is
relatively prime to n if and only if p does not divide a. There are pe integers a in the range
0 ≤ a < pe. Of these, pe−1 are multiples of p, namely the numbers rp for 0 ≤ r < pe−1. This
leaves pe − pe−1 = pe−1(p − 1) integers 0 ≤ a < n relatively prime to n, and they are all
positive, since a = 0 was one of those excluded. This shows that φ(n) = pe−1(p− 1).

It remains to show that if m and n are relatively prime, then φ(mn) = φ(m)φ(n). An
integer x is relatively prime to both m and n if and only if x has no prime factor in common
with either m or n, if and only if x has no prime factor in common with mn. So x is relatively
prime to both m and n if and only if x is relatively prime to mn (this much is true even if
m and n are not relatively prime).

Since we are dealing with more than one modulus at the same time, I will write [x]m,
[x]n, or [x]mn to distinguish between residue classes in Zm, Zn, or Zmn. Since m and n
are relatively prime, the Chinese Remainder Theorem gives a one-to-one correspondence
between residue classes [x]mn in Zmn and pairs ([a]m, [b]n), with [a]m ∈ Zm and [b]n ∈ Zn. In
the direction from Zmn to Zm × Zn, the correspondence simply sends [x]mn to ([x]m, [x]n).

We have just seen that x is relatively prime to mn if and only if it is relatively prime to
both m and n. Therefore, in the correspondence given by the Chinese Remainder Theorem,
Z×
mn corresponds to Z×

m×Z×
n . This shows that |Z×

mn| = |Z×
m|·|Z×

n |, so φ(mn) = φ(m)φ(n). �

The theorem above is equivalent to Goodman, Proposition 1.9.18(a), although Goodman
expresses the formula a bit differently. Goodman’s Proposition 1.9.18(b) is what we proved
in the second part of the proof given above.

3. Euler’s theorem

Theorem. If a is relatively prime to n, then aφ(n) ≡ 1 (mod n).

This is Theorem 1.9.20 in Goodman. He outlines a fairly complicated proof in the exercises
to Section 1.9. At the end of Section 1.10 he goes on to explain how it can be deduced more
easily from a general theorem of group theory. I will just add a few comments on the
explanation Goodman gives in 1.10.

Goodman uses the notation Φ(n) for the set of residue classes in Zn which have multi-
plicative inverses, which I denoted Z×

n . We have seen that this is also the set of classes of
integers relatively prime to n, and therefore that |Z×

n | = φ(n).
Now if [a] and [b] in Zn have multiplicative inverses, then [b]−1[a]−1 is an inverse of [a][b], as

you can check. This shows that the subset Z×
n is closed under the operation of multiplication

in Zn. It also contains the multiplicative identity [1] (which is its own inverse). Multiplication
is associative in Zn and therefore also in Z×

n . Therefore, since in Z×
n we have the identity

and inverses, Z×
n is a group with the operation of multiplication (this is Goodman, Lemma

1.10.3).



Now we invoke the general theorem (Goodman, Theorem 2.5.6, which we will prove later)
that every element a in a finite group of cardinality g satisfies ag = e, where e is the identity
element. When the group is Z×

n , this becomes [a]φ(n) = [1], which is another way of writing
Euler’s theorem.


