Math 113, Summer 2015

Notes on Euler's function $\phi(n)$

For each positive integer n, Euler's function $\phi(n)$ is defined to be the number of positive integers k less than n which are relatively prime to n.

For example, of the positive integers less than 12, four are relatively prime to 12, namely 1, 5, 7, and 11. Therefore $\phi(12) = 4$.

The purpose of these notes is to discuss some properties of $\phi(n)$. The same topics are covered in Section 1.9 of Goodman's book, but I prefer a different and I think somewhat simpler approach.

Before reading these notes, you will need to read Sections 1.6 and 1.7 of Goodman. I will use the same notation as he does for congruence, residue classes, and the system \mathbb{Z}_n of residue classes, with its operations of addition and multiplication modulo n. We will make use of the Chinese Remainder Theorem, which is Proposition 1.7.9 in Goodman.

1. Multiplicative inverses in \mathbb{Z}_n

Recall that each residue class [a] in \mathbb{Z}_n has a unique representative with a in the range $0 \leq a < n$. We will begin by showing that the classes [a] which have a multiplicative inverse in \mathbb{Z}_n are exactly those for which a is relatively prime to n (this is Proposition 1.9.9 in Goodman).

First, suppose a is relatively prime to n. Since a and n are relatively prime, there are integers s and t such that 1 = sa + tn. Then $sa \equiv 1 \pmod{n}$, which means [s][a] = [1] in \mathbb{Z}_n , so [s] is the required inverse.

For the converse, suppose a is not relatively prime to n. Let d = gcd(n, a). Then d > 1, so l = n/d is a positive integer less than n, and therefore $[l] \neq [0]$ in \mathbb{Z}_n . Now la = n(a/d) is a multiple of n, since d divides a, so [l][a] = [0] in \mathbb{Z}_n . If [a] had a multiplicative inverse [b]we could multiply on both sides by [b] to get [l] = [0] in \mathbb{Z}_n , a contradiction.

I will use the notation \mathbb{Z}_n^{\times} for the set of residue classes [a] in \mathbb{Z}_n which have multiplicative inverses. We have just seen that \mathbb{Z}_n^{\times} consists of those classes [a] for which a is relatively prime to n. The cardinality of the set \mathbb{Z}_n^{\times} is therefore equal to the number of integers a in the range $0 \leq a < n$ which are relatively prime to n. But 0 is not relatively prime to n(why not?), so the cardinality of \mathbb{Z}_n^{\times} is the number of positive integers less than n which are relatively prime to n. In other words, $\phi(n) = |\mathbb{Z}_n^{\times}|$. This fact is the reason why the function $\phi(n)$ is important.

2. A formula for $\phi(n)$

Theorem. Let the prime factorization of n be $n = p_1^{e_1} \cdots p_k^{e_k}$. Then

(1)
$$\phi(n) = \prod_{i=1}^{k} p_i^{e_i - 1}(p_i - 1)$$

Example: the prime factorization of 12 is $2^2 \cdot 3$. According the formula in the theorem, we have $\phi(n) = 2^1(2-1) \cdot 3^0(3-1) = 4$, in agreement with what we found before.

We will prove (1) in two steps. First, we will show that $\phi(n) = p^{e-1}(p-1)$ if $n = p^e$ is a power of a prime.

Second, we will use the Chinese Remainder Theorem to show that if m and n are relatively prime, then $\phi(mn) = \phi(m)\phi(n)$. This implies (by induction on k) that if m_1, \ldots, m_k are pairwise relatively prime, then $\phi(m_1 \cdots m_k) = \phi(m_1) \cdots \phi(m_k)$.

Formula (1) will then follow, because if $n = p_1^{e_1} \cdots p_k^{e_k}$, then the factors $m_i = p_i^{e_i}$ are pairwise relatively prime, and $\phi(m_i) = \phi(p_i^{e_i}) = p_i^{e_i-1}(p_i-1)$.

Now let us consider the case $n = p^e$. Since p is the only prime factor of n, a number a is relatively prime to n if and only if p does not divide a. There are p^e integers a in the range $0 \le a < p^e$. Of these, p^{e-1} are multiples of p, namely the numbers rp for $0 \le r < p^{e-1}$. This leaves $p^e - p^{e-1} = p^{e-1}(p-1)$ integers $0 \le a < n$ relatively prime to n, and they are all positive, since a = 0 was one of those excluded. This shows that $\phi(n) = p^{e-1}(p-1)$.

It remains to show that if m and n are relatively prime, then $\phi(mn) = \phi(m)\phi(n)$. An integer x is relatively prime to both m and n if and only if x has no prime factor in common with either m or n, if and only if x has no prime factor in common with mn. So x is relatively prime to both m and n if and only if x is relatively prime to mn (this much is true even if m and n are not relatively prime).

Since we are dealing with more than one modulus at the same time, I will write $[x]_m$, $[x]_n$, or $[x]_{mn}$ to distinguish between residue classes in \mathbb{Z}_m , \mathbb{Z}_n , or \mathbb{Z}_{mn} . Since m and n are relatively prime, the Chinese Remainder Theorem gives a one-to-one correspondence between residue classes $[x]_{mn}$ in \mathbb{Z}_{mn} and pairs $([a]_m, [b]_n)$, with $[a]_m \in \mathbb{Z}_m$ and $[b]_n \in \mathbb{Z}_n$. In the direction from \mathbb{Z}_{mn} to $\mathbb{Z}_m \times \mathbb{Z}_n$, the correspondence simply sends $[x]_{mn}$ to $([x]_m, [x]_n)$.

We have just seen that x is relatively prime to mn if and only if it is relatively prime to both m and n. Therefore, in the correspondence given by the Chinese Remainder Theorem, \mathbb{Z}_{mn}^{\times} corresponds to $\mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$. This shows that $|\mathbb{Z}_{mn}^{\times}| = |\mathbb{Z}_{m}^{\times}| \cdot |\mathbb{Z}_{n}^{\times}|$, so $\phi(mn) = \phi(m)\phi(n)$. \Box

The theorem above is equivalent to Goodman, Proposition 1.9.18(a), although Goodman expresses the formula a bit differently. Goodman's Proposition 1.9.18(b) is what we proved in the second part of the proof given above.

3. Euler's theorem

Theorem. If a is relatively prime to n, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

This is Theorem 1.9.20 in Goodman. He outlines a fairly complicated proof in the exercises to Section 1.9. At the end of Section 1.10 he goes on to explain how it can be deduced more easily from a general theorem of group theory. I will just add a few comments on the explanation Goodman gives in 1.10.

Goodman uses the notation $\Phi(n)$ for the set of residue classes in \mathbb{Z}_n which have multiplicative inverses, which I denoted \mathbb{Z}_n^{\times} . We have seen that this is also the set of classes of integers relatively prime to n, and therefore that $|\mathbb{Z}_n^{\times}| = \phi(n)$.

Now if [a] and [b] in \mathbb{Z}_n have multiplicative inverses, then $[b]^{-1}[a]^{-1}$ is an inverse of [a][b], as you can check. This shows that the subset \mathbb{Z}_n^{\times} is closed under the operation of multiplication in \mathbb{Z}_n . It also contains the multiplicative identity [1] (which is its own inverse). Multiplication is associative in \mathbb{Z}_n and therefore also in \mathbb{Z}_n^{\times} . Therefore, since in \mathbb{Z}_n^{\times} we have the identity and inverses, \mathbb{Z}_n^{\times} is a group with the operation of multiplication (this is Goodman, Lemma 1.10.3). Now we invoke the general theorem (Goodman, Theorem 2.5.6, which we will prove later) that every element a in a finite group of cardinality g satisfies $a^g = e$, where e is the identity element. When the group is \mathbb{Z}_n^{\times} , this becomes $[a]^{\phi(n)} = [1]$, which is another way of writing Euler's theorem.