Exercises

7.6 By the spectral theorem, \(V \) has an orthonormal basis consisting of eigenvectors \(e_i \) of \(T \), say \(T e_i = \lambda_i e_i \). Then \(\text{range}(T) = \text{span}(\{ e_i : \lambda_i \neq 0 \}) \). But \(T^* e_i = \overline{\lambda_i} e_i \), so \(\text{range}(T^*) = \text{span}(\{ e_i : \overline{\lambda_i} \neq 0 \}) = \text{range}(T) \).

7.7 We can describe \(\text{range}(T) \) as in 7.6, above. Then \(\text{range}(T^*) = \text{span}(\{ e_i : \lambda_i \neq 0 \}) = \text{range}(T) \). Similarly, \(\text{null}(T^*) = \text{span}(\{ e_i : \lambda_i = 0 \}) = \text{null}(T) \).

7.8 The conditions say that \((1,2,3) \) and \((2,5,7) \) are eigenvectors of \(T \) with eigenvalues \(0, 1 \); in particular, with different eigenvalues. If \(T \) were self-adjoint, this would imply that the two vectors are orthogonal, but \(\langle (1,2,3), (2,5,7) \rangle = 33 \neq 0 \).

[It is understood that we are using the Euclidean inner product on \(\mathbb{R}^3 \).]

7.10 \(T \) is diagonalizable, by the spectral theorem, and its eigenvalues satisfy \(\lambda^8 = \lambda^9 \), i.e. \(\lambda^8 (\lambda - 1) = 0 \). Hence all eigenvalues are \(0 \) or \(1 \), so \(T \) is a projection and \(T^2 = T \). It's self-adjoint (in fact, an orthogonal projection) because the eigenvalues are real.

7.11 Diagonalize \(T \) and take for \(S \) any operator whose matrix is \((\alpha_1, \ldots, \alpha_n) \) where the matrix of \(T \) is \((\lambda_1, \ldots, \lambda_n) \) and \(\alpha_i^2 = \lambda_i \). This is possible, since every complex number has a square root.

7.13 True, by same argument as in 7.11 and using the fact that every real number has a cube root.

7.15 "If" follows from the spectral theorem. For "only if," let \(e_1, \ldots, e_n \) be a basis consisting of eigenvectors of \(T \) and define \(\langle u, v \rangle = \Sigma a_i \overline{b_i} \) where \(u = \Sigma a_i e_i \), \(v = \Sigma b_i e_i \), so that \(b \) becomes an \(L^2 \)-normal basis.
7.17 If S, T are positive, then $(S + T)^* = S^* + T^* = S + T$, so $S + T$ is self-adjoint, and $\langle (S + T)v, v \rangle = \langle Sv, v \rangle + \langle Tv, v \rangle \geq 0$ for all v, so $S + T$ is positive.

7.18 $(T^k)^* = (T^k)^k = T^k$, so T^k is self-adjoint. The eigenvalues λ_i^k are λ_i^k, where λ_i are the eigenvalues of T, so they are ≥ 0, hence T^k is positive.

7.19 If $\langle Tv, v \rangle > 0$ for all v, then null$(T) = 0$ (since $v \in$ null(T) implies $\langle Tv, v \rangle = \langle 0, v \rangle = 0$), so T is invertible. Since T is positive, let e_i be a basis of V consisting of eigenvectors of T, say $Te_i = \lambda_i e_i$, where $\lambda_i > 0$ (by spectral theorem and definition of positivity). If T is invertible, then all $\lambda_i > 0$. If $v = \Sigma a_i e_i$, then $\langle Tv, v \rangle = \Sigma \lambda_i |a_i|^2$. This is > 0 unless all $a_i = 0$, i.e., unless $v = 0$.

7.20 True. For every orthonormal basis (e_1, e_2) of F^2, the operator $T e_1 = -e_1$, $T e_2 = e_2$ is self-adjoint with $T^2 = I$. This operator determines span$(e_1) = \text{null}(T + I)$. By Gram-Schmidt, span$(e_1)$ can be any 1-dimensional subspace of F^2, i.e., every such subspace contains the first member of some orthonormal basis). Since F^2 has infinitely many 1-dimensional subspaces (note $F = \mathbb{R}$ or $F = \mathbb{C}$ – F is not a finite field!), there are infinitely many distinct operators of the above form T.

7.23 The matrices of T, T^T, and S in the standard basis of F^3 are (it doesn't matter whether $F = \mathbb{R}$ or $F = \mathbb{C}$ since the solution is real):

$$
T = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} \quad T^T = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad T^T T = \begin{pmatrix} 200 \\ 0 & 30 \\ 0 & 0 & 1 \end{pmatrix} \quad S = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
$$

because $T^T T$ happens to be diagonal.
Problems

1. I'll prove this assuming either that T is self-adjoint, or, in the case $\mathbb{F} = \mathbb{C}$, normal. In either case we can find an orthonormal basis e_1, \ldots, e_n of V consisting of eigenvectors of T, say $Te_i = \lambda_i e_i$, where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of T. Let $\alpha = \min |\lambda_i|$. If $\|v\| = 1$, and we express v in terms of the basis (e_1, \ldots, e_n) as

$$v = a_1 e_1 + \cdots + a_n e_n,$$

then $Tv = a_1 \lambda_1 e_1 + \cdots + a_n \lambda_n e_n$.

$$\|Tv\|^2 = \sum |a_i|^2 |\lambda_i|^2 \geq \alpha^2 \sum |a_i|^2 = \alpha^2,$$

since $\sum |a_i|^2 = 1$.

and $|\lambda_i|^2 \geq \alpha^2$ for all i. This shows

$$\min_{\|v\| = 1} \|Tv\| \geq \alpha.$$

To prove equality, let i be an index for which $\lambda_i = |\lambda_i|$ and take $v = e_i$. Then $\|v\| = 1$, and $\|Tv\| = |\lambda_i| = \alpha$.

2. In the case $\mathbb{F} = \mathbb{R}$, $T - \lambda I$ is self-adjoint. In the case $\mathbb{F} = \mathbb{C}$, $(T - \lambda I)^* = T^* - \lambda I$, and since T is self-adjoint, this is equal to $T - \lambda I$, which commutes both $T - \lambda I$, so $T - \lambda I$ is normal. By hypothesis, $\min_{\|v\| = 1} \|T - \lambda I\| \leq \varepsilon$,

so $T - \lambda I$ has an eigenvalue β with $|\beta| \leq \varepsilon$ by Problem 1. Then $\lambda' = \lambda + \beta$ is an eigenvalue of T, and $|\lambda' - \lambda| = |\beta| \leq \varepsilon$.

[If you only proved Problem 1 for self-adjoint operators, you will only be able to use it to solve Problem 2 in the case $\mathbb{F} = \mathbb{R}$.]