Math 110—Linear Algebra Fall 2009, Haiman Problem Set 12

Due Monday, Nov. 23, at the beginning of lecture.

- 1. Let J_n denote the $n \times n$ matrix over \mathbb{R} whose entries are all equal to 1.
- (a) Show that $(1, 1, ..., 1)^t$ is an eigenvector of J_n . What is its eigenvalue?
- (b) Find the dimension of the nullspace of J_n .
- (c) Use (a) and (b) to show that J_n is diagonalizable, and find the diagonal matrix similar to J_n .
 - (d) Find the characteristic polynomial of J_n .
- (e) Let $Z_n = J_n I_n$ be the $n \times n$ matrix with zeroes on the diagonal and ones in all off-diagonal entries. Find $\det(Z_n)$, and show that Z_n is invertible for n > 1.
 - (f) Find the characteristic polynomial of Z_n .
- (g) Find a quadratic polynomial f(t) (with coefficients depending on n) such that $f(Z_n) = 0$.
- (h) Use (g) to calculate the inverse of Z_n , expressed as a linear combination of Z_n and I_n . (This generalizes Problem Set 7, Problem 3.)
- 2. Let $T: V \to V$ be a linear operator, where V is finite dimensional. Suppose that W_1, \ldots, W_k are T-invariant subspaces of V such that T_{W_i} is diagonalizable for each i. Prove that if $W_1 + \cdots + W_k = V$, then T is diagonalizable.
 - 3. Section 5.4, Exercises 13 and 20.