Math 110—Linear Algebra Fall 2009, Haiman Problem Set 9

Due Monday, Nov. 2 at the beginning of lecture.

- 1. Prove that if A and Q are $n \times n$ matrices over \mathbb{F} , with Q invertible, then $\det(Q^{-1}AQ) = \det(A)$. Deduce that if V is a finite-dimensional vector space and $T: V \to V$ is a linear transformation, then $\det([T]_{\beta})$ does not depend on the choice of the ordered basis β of V.
 - 2. A matrix of the form

$$A = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

is called a Vandermonde matrix.

- (a) Show that the determinant $\det(A)$ is a polynomial in the variables x_1, x_2, \ldots, x_n in which every term has degree n(n-1)/2. (The *degree* of a monomial $x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$ is defined to be $a_1 + \cdots + a_n$.)
- (b) Show that det(A) becomes zero if $x_i = x_j$ for any i and j. This implies that det(A) is divisible as a polynomial in the x_i 's by the product

$$\prod_{1 \le i < j \le n} (x_j - x_i).$$

- (c) Show that the coefficient of the monomial $x_1^0 x_2^1 \cdots x_n^{n-1}$ in $\det(A)$ is equal to 1.
- (d) Deduce from the above that det(A) is equal to the product in part (b).
- 3. Suppose M is an $n \times n$ matrix of the form

$$M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

where A and C are square. Express det(M) in terms of det(A) and det(C). Give reasoning to justify your answer.

- 4. Prove that an upper triangular matrix (that is, a square matrix A such that $a_{ij} = 0$ for j < i) is invertible if and only if all its diagonal entries are non-zero.
- 5. Suppose $f: M_{m \times n}(\mathbb{F}) \to \mathbb{F}$ is an m-multilinear function of the rows of $A \in M_{m \times n}$ (recall that this means f is linear as a function of each row separately when the other rows are held constant). Suppose f also has the property that f(A) = 0 whenever A has two

equal rows. Prove that f(B) = -f(A) whenever B is obtained from A by switching two rows.

- 6. A permutation of order n is a bijective function $\pi: \{1, \ldots, n\} \to \{1, \ldots, n\}$. If π is a permutation of order n, we define the permutation matrix $P(\pi)$ to be the $n \times n$ matrix with $(\pi(j), j)$ -th entry equal to 1 for all $j = 1, \ldots, n$, and all other entries equal to zero.
 - (a) Show that the linear transformation $L_{P(\pi)}$ sends e_j to $e_{\pi(j)}$.
 - (b) Show that $L_{P(\pi)}$ sends $(x_{\pi(1)}, \ldots, x_{\pi(n)})^T$ to $(x_1, \ldots, x_n)^T$.
- (c) The inversion number $i(\pi)$ is defined to be the number of pairs of integers $1 \le j < k \le n$ such that $\pi(j) > \pi(k)$. Prove that $\det(P(\pi)) = (-1)^{i(\pi)}$.