Math 110—Linear Algebra Fall 2009, Haiman Problem Set 6

Due Monday, Oct. 12 at the beginning of lecture.

- 1. Section 2.4, Exercise 9.
- 2. Section 2.4, Exercise 16.
- 3. Prove or disprove the following statement: the set of invertible linear transformations from V to W is a subspace of $\mathcal{L}(V, W)$.
- 4. Let R be the rotation in \mathbb{R}^3 about the x-axis, by $\pi/4$ in the direction from the y-axis towards the z-axis. Let S be the rotation in \mathbb{R}^3 about the z-axis, by $\pi/4$ in the direction from the x-axis toward the y-axis.
 - (a) Find the matrices with respect to the standard basis in \mathbb{R}^3 of R, S and RS.
- (b) Assuming that RS is also a rotation (in fact, it is true that the composite of any two rotations is a rotation), find a vector in the direction of the axis of rotation for RS. Hint: such a vector v satisfies the equation RS(v) = v.
- 5. Let A and B be the matrices of the rotations R and S in Problem 2. Find a change of coordinate matrix Q such that $B = Q^{-1}AQ$.
 - 6. Let V be a finite dimensional vector space. Let α , β , γ and δ be ordered bases of V.
- (a) If the change of coordinate matrices $[I]^{\beta}_{\alpha}$ and $[I]^{\delta}_{\gamma}$ are equal, does it follow that $\alpha = \gamma$ and $\beta = \delta$?
 - (b) If $[I]^{\beta}_{\alpha} = [I]^{\gamma}_{\alpha}$, does it follow that $\beta = \gamma$? Justify your answers.