Math 110—Linear Algebra Fall 2009, Haiman Problem Set 5

Due Monday, Oct. 5 at the beginning of lecture.

- 1. Given vector spaces V and W over a field \mathbb{F} , and subspaces $V' \subseteq V$, $W' \subseteq W$, show that each of the following sets of linear transformations is a subspace of $\mathcal{L}(V, W)$:
 - (a) $\{T: V \to W \text{ such that } V' \subseteq N(T)\}$
 - (b) $\{T: V \to W \text{ such that } R(T) \subseteq W'\}$
- 2. Let V be a finite-dimensional vector space and $T: V \to V$ a linear transformation. Prove that if $T^2 = 0$, then $\dim(R(T)) \leq \dim(V)/2 \leq \dim(N(T))$.
 - 3. Section 2.3, Exercise 9.
- 4. Recall that the *trace* $\operatorname{tr}(A)$ of a square matrix A is defined to be the sum of the diagonal entries A_{ii} . Show that for all $A \in M_{m \times n}(\mathbb{F})$ and $B \in M_{n \times m}(\mathbb{F})$, we have

$$tr(AB) = tr(BA).$$

(Note that AB is $m \times m$ and BA is $n \times n$, so they are square matrices.)

5. Let A be a matrix over \mathbb{F} . Prove that $\operatorname{rank}(L_A) = 1$ if and only if there exist a non-zero row vector X and a non-zero column vector Y such that A = YX.