Problem Set 3 Solutions

1) Use induction on n. For $k = 0$, the empty set is independent by definition. For $k > 0$, we can assume $S \setminus \{ v_1, \ldots, v_{k-1} \}$ independent by induction. Since $v_k \notin \text{Span}(S)$ (and, in particular, $v_k \notin S$), it follows that $S \setminus \{ v_1, \ldots, v_{k-1} \} \cup \{ v_k \}$ is independent, by Theorem 1.7 in your book.

2) a) By problem 1, we can choose an independent sequence (v_1, \ldots, v_k) by choosing each vector in succession, subject to the condition $v_j \notin \text{Span}(v_1, \ldots, v_{j-1})$ for each j (when $j = 1$, this means $v_1 \neq 0$, since $\text{Span}(\emptyset) = \{0\}$). Then each $S = (v_1, \ldots, v_{j-1})$ is independent, hence $\text{dim}(\text{Span}(v_1, \ldots, v_{j-1})) = j - 1$. By PS 2, Problem 5, it follows that $\text{dim}(\text{Span}(v_1, \ldots, v_{j-1})) = 2^{j-1}$, and $|S| = 2^k$, so there are $2^k - 2^{j-1}$ choices for v_j. Hence

$$Q(n,k) = (2^k - 1)(2^{k-2})(2^{k-4}) \cdots (2^{k-2^{k-1}})$$

b) Part (a) implies that the number of sequences (v_1, \ldots, v_k) that are bases of any given k-dimensional subspace $W \subseteq V(\mathbb{F}_2)^n$ is $Q(n,k)$. Every independent sequence (v_1, \ldots, v_k) is a basis of one such W, namely $W = \text{Span}(v_1, \ldots, v_k)$, and since $Q(n,k)$ of these are bases for each W, the number of k-dimensional subspaces is $Q(n,k)/Q(n,k)$.

c) $(2^{10} - 1)(2^{10} - 2)(2^{10} - 2^2)(2^{10} - 2^3)/(2^{5} - 1)(2^{5} - 2)(2^{5} - 2^2)(2^{5} - 2^3)(2^{5} - 2^4)$

$= 109,221,651$

3) a) Lagrange interpolation implies that there exists $f(x) \in P_{n-1}(\mathbb{F})$ such that $(f(c_1), \ldots, f(c_n))$ is any specified vector in \mathbb{F}^n.

Since $P_m(\mathbb{F}) \cong P_{m-1}(\mathbb{F})$ for $m > n-1$, this shows that E is onto.

b) Since $E : P_n(\mathbb{F}) \to \mathbb{F}^n$ is onto, $\text{dim}(P_n(\mathbb{F})) = n+1$, and $\text{dim}(\mathbb{F}^n) = n$, Theorem 2.3 in the book gives nullity$(E) = 1$. Now $E(f) = 0$ means every c_i is a root of f, so the space of such polynomials has dimension 1. The polynomial $g(x) = (x-c_1)(x-c_2) \cdots (x-c_n)$ belongs to $\ker(E)$ and is not the 0 polynomial, so $g(x)$ spans $\ker(E)$, i.e., every polynomial $g(x) \in \ker(E)$ is a scalar multiple of f.

(4) Following the hint, define \(T: P_{n-d}(F) \to P_n(F) \) by
\[T(p(x)) = p(w)f(x). \]
Since \(\deg(p(x)) = d \), multiplying any \(f(x) \in P_{n-d}(F) \)
by \(p(x) \) gives \(p(x)f(x) \in P_n(F) \), so the definition makes sense.

\(T \) is linear because
\[p(x)(af(x) + bg(x)) = ap(x)f(x) + b p(x)g(x). \]
Finally, if \(f(x) \in P(F) \) has degree \(m > n - d \) then \(p(x)f(x) \)
has degree \(m + d > n \), so \(p(x)f(x) \notin P_n(F) \). By definition
any \(g(x) \in P_n(F) \) divisible by \(p(x) \) is \(g(x) = p(x)h(x) \) for some
\(h(x) \), and the preceding sentence shows that \(f(x) \notin P_{n-d}(F) \).

Hence \(W = R(T) \), which proves (a) by Thm. 2.1 in the book.

For (b), since \(p(x) \neq 0 \) (as its degree is \(\geq 1 \)), we have
\(f(x) \neq 0 \Rightarrow p(x)f(x) \neq 0 \), or equivalently \(p(x)f(x) = 0 \Rightarrow f(x) = 0 \).
In other words, \(N(T) = \{0\} \). Then Thm 2.3 gives
\[N(T) + R(T) = \dim(P_{n-d}(F)) = n - d + 1, \]
so \(\dim(W) = n - d + 1 \).

(5) a) Since \(\bar{w} + \bar{z} = \bar{w} + \bar{z} \), we get
\[T((\bar{w}_1, \ldots, \bar{w}_n) + (\bar{z}_1, \ldots, \bar{z}_n)) = (\bar{w}_1, \ldots, \bar{w}_n) + (\bar{z}_1, \ldots, \bar{z}_n) = T(\bar{w}) + T(\bar{z}) \]
i.e. \(T \) is additive.

b) If \(a \in R \) is real, then \(\bar{a} \bar{z} = \bar{a} \bar{z} = a \bar{z} \), so
\[T(a(\bar{z}_1, \ldots, \bar{z}_n)) = a(\bar{z}_1, \ldots, \bar{z}_n) = a T(\bar{z}_1, \ldots, \bar{z}_n). \]
Combined with a), this means \(T \) is a linear transformation
of vector spaces over \(\mathbb{R} \).

(6) a) Since the rows of \(A + B \) are the sums of a row of \(A \) and corresponding
row of \(B \), and since the rows of \(CA \) are \(c \times n \) times the rows of \(A \),
it's clear that \(S(A + B) = S(A) + S(B) \) and \(S(cA) = c S(A) \).

b) (Assuming \(n > 0 \)) we can get any vector in \(F^n \) as the sum
of rows of a matrix with first row \(\bar{v} \) and all other rows \(\bar{0} \). So
\(S \) is onto, \(R(S) = F^n \).

c) By definition, \(N(S) \) is the set \(N \) in part (d).

d) Since \(N = N(S) \), \(N \) is a subspace by Thm. 2.1, and Thm 2.3 gives
\[\dim(N) + \dim(F^n) = \dim(F^m), \text{ hence } \dim(N) = (m-1)n. \]
a) By Thm 2.3,
\[\dim R(T) = \dim(v) - \dim(N(T)) \leq \dim(v) \]
\[\leq \dim(w) \quad \text{by assumption} \]
\[< \dim(w) \quad \text{since } \dim(N(T)) \leq 0 \]
Hence \(R(T) \neq W \), i.e. \(T \) is not onto.

b) Similarly,
\[\dim N(T) = \dim(v) - \dim(R(T)) \]
\[\geq \dim(v) - \dim(w) \quad \text{since } R(T) \subseteq W, \]
\[\geq \dim(v) - \dim(w) \quad \text{so } \dim(R(T)) \leq \dim w \]
\[> 0 \quad \text{by assumption} \]
Hence \(N(T) \neq 0 \), so \(T \) is not 1-to-1 by Thm 2.4

(or, more directly, because \(T^{-1}(\{0\}) = N(T) \) by definition and \(N(T) \neq 0 \) implies \(N(T) \) has more than one element.)