Math 110—Linear Algebra Fall 2009, Haiman Problem Set 3

Due Monday, Sept. 21 at the beginning of lecture.

- 1. Show that if vectors v_1, \ldots, v_k in a vector space V have the properties that $v_1 \neq 0$, and each v_i is not in the span of the preceding ones, then the vectors are linearly independent. Conversely, show that if v_1, \ldots, v_k is an ordered list of linearly independent vectors, then it has the above properties.
- **2.** (a) Find a formula for the number Q(n, k) of (ordered) sequences (v_1, v_2, \ldots, v_k) of linearly independent vectors in V, where V is a vector space of dimension n over \mathbb{F}_2 , and $k \leq n$. [Hint: Use the previous problem and Problem Set 2, Problem 5.]
- (b) Prove that the number of k-dimensional subspaces of $(\mathbb{F}_2)^n$ is given by Q(n,k)/Q(k,k), for $k \leq n$.
 - (c) Calculate the number of 5-dimensional subspaces of $(\mathbb{F}_2)^{10}$.
- **3.** Let c_1, \ldots, c_n be distinct elements of a field \mathbb{F} . Define the function $E: P_m(\mathbb{F}) \to \mathbb{F}^n$ by $E(f(x)) = (f(c_1), \ldots, f(c_n)).$
 - (a) Use Lagrange interpolation to prove that E is onto if $m \ge n 1$.
- (b) Find the nullity of E if m = n. Deduce that if f(x) is a polynomial of degree at most n such that every c_i is a root of f, then f must be a scalar multiple of $(x-c_1)(x-c_2)\cdots(x-c_n)$.
- **4.** Let $p(x) \in P(\mathbb{F})$ be a polynomial of degree d (exactly). Given $n \geq d$, let W be the set of polynomials in $P_n(\mathbb{F})$ which are divisible by p(x).
 - (a) Prove that W is a subspace of $P_n(\mathbb{F})$.
 - (b) Find $\dim(W)$.
- [Hint for both parts: show that W is equal to the range of a linear transformation $T: P_{n-d}(\mathbb{F}) \to P_n(\mathbb{F})$ given by T(f(x)) = p(x)f(x).]
- **5.** (a) Show that the function $T: \mathbb{C}^n \to \mathbb{C}^n$ given by $T((z_1, \ldots, z_n)) = (\overline{z_1}, \ldots, \overline{z_n})$ is additive (satisfies the first property in the definition of *linear transformation*) but not linear. Here \overline{z} denotes the complex conjugate a bi of z = a + bi.
 - (b) Show that if we regard \mathbb{C}^n as a vector space over \mathbb{R} instead of \mathbb{C} , then T is linear.
- **6.** Let $S: M_{m \times n}(\mathbb{F}) \to \mathbb{F}^n$ be the function that sends a matrix A to the sum of its rows. Assume m and n are non-zero.
 - (a) Prove that S is a linear transformation.
 - (b) Find the range of S.
 - (c) Find the nullspace S.
- (d) Let N be the set of matrices $A \in M_{m \times n}(\mathbb{F})$ such that every column of A sums to zero. Use the preceding parts of this problem to prove that N is a subspace of $M_{m \times n}(\mathbb{F})$, and find its dimension.
- 7. Section 2.1 Exercise 17.