1. (5 points each) Determine whether each of the following assertions is true or false. Give a brief explanation for each answer (full proof is not required).

(a) If a linear transformation \(T: V \rightarrow W \) between finite-dimensional vector spaces is 1-to-1, then \(\dim(V) \leq \dim(W) \).

True. Since \(\text{null}(T) = 0 \), \(\dim(V) = \text{rank}(T) \) by the dimension theorem.
And \(\text{rank}(T) \leq \dim(W) \) since \(\text{R}(T) \subseteq W \).

(b) If \(V \) and \(W \) are finite-dimensional vector spaces such that \(\dim(V) \leq \dim(W) \), and \(T: V \rightarrow W \) is a linear transformation, then \(T \) is 1-to-1.

False. A counterexample is the zero map \(T: \mathbb{R}^n \rightarrow \mathbb{R}^n \) for any \(n > 0 \).

(c) The set of vectors \((x_1, x_2, x_3, x_4) \) which satisfy \(x_1 = x_4 \) and \(x_2 = x_3 \) is a subspace of \(\mathbb{R}^4 \).

True. The simplest reason is that part (d) is also true.

(d) The set of vectors in part (c) is the nullspace of a linear transformation from \(\mathbb{R}^4 \) to some vector space over \(\mathbb{R} \).

True. It's the nullspace of \(T: \mathbb{R}^4 \rightarrow \mathbb{R}^2 \) defined by
\[
T((x_1, x_2, x_3, x_4)) = (x_1 - x_4, x_2 - x_3) .
\]
(It's easy to check that \(T \) is linear, but you need not do so to get full credit on the problem)

(e) The set of vectors in part (c) is the nullspace of a linear transformation from \(\mathbb{R}^4 \) to \(\mathbb{R} \) (in other words, a linear functional).

False. Since \(T \) in part (d) is onto, it has \(\text{rank}(T) = 2 \), and therefore its nullspace, which is the set of vectors in (c), has dimension 2. But the nullspace of any linear \(S: \mathbb{R}^4 \rightarrow \mathbb{R} \) has dimension \(\geq 3 \) by dimension theorem.

(f) \(\mathbb{Q}^n \) is a subspace of the vector space \(\mathbb{R}^n \) over \(\mathbb{R} \). (\(\mathbb{Q} \) denotes the field of rational numbers.)

False. Not closed under scalar multiplication by irrational scalars

(g) \(\mathbb{Q}^n \) is a subspace of \(\mathbb{R}^n \) considered as a vector space over \(\mathbb{Q} \) (with the usual addition, and multiplication by rational scalars).

True. Clearly closed under addition, and closed under scalar multiplication since \((ax_1, ..., ax_n) \in \mathbb{Q}^n \) if \(a \) and all \(x_i \) are rational.
2. Let S be the following subset of $P(\mathbb{R})$:

$$S = \{ f(x) = x^5 + x^2, \ g(x) = x^5 + 2, \ h(x) = x^3, \ j(x) = x^2 - 2 \}$$

(a) (30 points) Find a subset of S which is a basis of $\text{Span}(S)$ and prove that your answer is correct.

There are three possible correct answers: any subset consisting of
$h(x)$ and two elements from $\{ f(x), g(x), j(x) \}$. I'll prove that
$B = \{ f(x), g(x), h(x) \}$ is a basis. The proof for the other bases
is similar.

First we'll show $\text{Span}(B) = \text{Span}(S)$. Since $B \subseteq S$, $\text{Span}(B) \subseteq \text{Span}(S)$,
and to prove $\text{Span}(S) \subseteq \text{Span}(B)$, since $\text{Span}(B)$ is a subspace, it's
enough to prove $S \subseteq \text{Span}(B)$. Thus we only need to show that $j(x)
is in $\text{Span}(B)$, which is true because

$$j(x) = f(x) - g(x).$$

Now we'll show B is linearly independent. Suppose a, b, c are
scalars such that

$$af(x) + bg(x) + ch(x) = 0$$

(identically as polynomials). The left-hand side is

$$(a+b)x^5 + cx^3 + ax^2 + 2b.$$

For this to be the 0 polynomial we must have $a = b = c = 0$.

(b) (5 points) Find $\text{dim}(\text{Span}(S))$.

$$\text{dim}(\text{Span}(S)) = |B| = 3.$$
3. (30 points) Let $T: V \to W$ be a linear transformation. Prove that if T is 1-to-1, and $v_1, \ldots, v_k \in V$ are linearly independent, then $T(v_1), \ldots, T(v_k)$ are linearly independent.

Suppose $a_1T(v_1) + a_2T(v_2) + \ldots + a_kT(v_k) = 0$.

Since T is linear, the left-hand side is equal to $T(a_1v_1 + a_2v_2 + \ldots + a_kv_k)$.

Since T is 1-to-1, the fact that this is zero implies $a_1v_1 + a_2v_2 + \ldots + a_kv_k = 0$.

Finally, since v_1, \ldots, v_k are linearly independent, this implies that all coefficients a_i are zero.

Hence $T(v_1), \ldots, T(v_k)$ are linearly independent.