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1. History and introduction

1.1. OVERVIEW

In these lectures we’ll be discussing a series of new results in combinatorics,
algebra and geometry. The main combinatorial problems we solve are (1) we
prove the positivity conjecture for Macdonald polynomials, and (2) we prove
a series of conjectures relating the diagonal harmonics to various familiar
combinatorial enumerations; in particular we prove that the dimension of
the space of diagonal harmonics is (n+1)n−1. In order to prove these results,
we have to work out some new results about geometry of the Hilbert scheme
of points in the plane and a certain related algebraic variety. As a technical
tool for our geometric results, in turn, we need to do some commutative
algebra, which although complicated, has a quite explicit and combinatorial
nature.

Today I want to give a short history of the original problem and how I
got mixed up in it, and then show you some theorems in three seemingly
unrelated areas. My goal in the remaining lectures will be to explain what
these theorems have to do with each other and indicate how they are proved.
The basic references are the series of four papers [15], [16], [17], and [18]
(an abbreviated version of the last one appeared as [19]).
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1.2. HISTORY

In 1988, Macdonald created something of a revolution in the ancient and
classical theory of symmetric functions with the introduction of Macdon-
ald polynomials. They are symmetric functions Pµ(x; q, t) in variables x =
x1, x2, . . ., with coefficients that are rational functions of two parameters q
and t. Their importance stems in part from the fact that by specializing
the two parameters in different ways we recover two previously known and
important families of symmetric functions involving one parameter: the
Hall-Littlewood polynomials (by setting q = 0) and the Jack polynomials
(by setting t = qα and letting q → 1). After suitably normalizing and
transforming the polynomials Pµ, we get polynomials H̃µ(x; q, t), whose
expansions in terms of Schur functions we may write as

H̃µ(x; q, t) =
∑

λ

K̃λ,µ(q, t)sλ(x).

Here λ and µ are partitions of an integer n. The coefficients K̃λ,µ(q, t)
are called Kostka-Macdonald coefficients. We’ll define H̃µ later. Right now
we only mention that based on hand calculations, Macdonald conjectured
that the Kostka-Macdonald coefficients are polynomials with non-negative
integer coefficients:

K̃λ,µ(q, t) ∈ N[q, t].

This is more remarkable for the fact that as defined, the K̃λ,µ(q, t) are
rational functions of q and t, and were only proved to be polynomials around
1996, in five independent papers by a total of seven authors [12, 13, 21, 22,
25].

Macdonald defined the coefficients K̃λ,µ(q, t) in such a way that on
setting q = 0 (the specialization from Macdonald to Hall-Littlewood poly-
nomials) they yield the famous t-Kostka coefficients K̃λ,µ(t) = K̃λ,µ(0, t).
These were known to be in N[t] as a result of a cohomological interpreta-
tion due to Hotta and Springer [20, 26], and later a beautiful and subtle
combinatorial interpretation due to Lascoux and Schützenberger [23]. Both
descriptions are rather difficult.

When I came to U.C. San Diego in 1991, Adriano Garsia and Claudio
Procesi had been working on a simpler approach to the positivity theorem
for the t-Kostka coefficients [11], with the idea that it might extend to
the q, t case. Adriano and I soon found the right extension—or so we
conjectured—but surprisingly, our conjecture defied every attempt at an
elementary proof. All that resulted from our attempts was an ever-larger
pile of conjectures, notably those on diagonal harmonics alluded to above.
Later, we discussed our efforts with Procesi. He was familiar with the
geometry of the Hilbert scheme of points in the plane, and realized that



MACDONALD POLYNOMIALS AND HILBERT SCHEMES 3

there was a way it might explain the diagonal harmonics conjectures. What
I’ll describe in these lectures is ultimately the result of following up on this
suggestion by Procesi. His proposed set-up eventually turned out to explain
the diagonal harmonics conjectures and, still better and unexpectedly, to
explain our original conjecture on the Kostka-Macdonald coefficients too.

Now let’s turn to our promised list of seemingly unrelated theorems.

1.3. COMBINATORICS/LINEAR ALGEBRA

Let M ⊆ N×N be a finite subset of the first quadrant integer lattice, with
|M | = n elements. Often, M will be the Young diagram of a partition µ of
n:

d(µ) = {(p, q) : p < µq+1}.
For example, the diagram of µ = (2, 2, 1) looks like this:

• (2, 0)
• (1, 0) • (1, 1)
• (0, 0) • (0, 1).

Note that origin of indices is (0, 0), and that the first coordinate, which
indexes the rows of the diagram, is the coordinate along the vertical axis.

Given M , we define a polynomial ∆M(x1, y1, . . . , xn, yn) in 2n variables
to be the n× n matrix determinant

∆M(x, y) = det
[
x

pj

i y
qj

i

]
1≤i,j≤n

, (1)

where
M = {(p1, q1), . . . , (pn, qn)}.

When M is the diagram of a partition we abbreviate ∆d(µ) to ∆µ. For
example, for the partition µ = (2, 2, 1) whose diagram is displayed above,
we have

∆µ = det




1 y1 x1 x1y1 x2
1

1 y2 x2 x2y2 x2
2

...
...

...
...

...
1 y5 x5 x5y5 x2

5


 .

Observe that ∆µ is doubly homogeneous of degree n(µ) =
∑

i(i− 1)µi =∑
i pi in x and degree n(µ′) in y, where µ′ denotes the conjugate partition.

Observe also that there is a symmetry

∆µ′(x, y) = ∆µ(y, x).

We let the symmetric group Sn act diagonally on the polynomial ring
C[x, y], that is, by the rule

wxi = xw(i), wyi = yw(i) for all w ∈ Sn.
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Then Sn permutes the rows of the matrix in (1), hence acts on ∆M by

w∆M = ε(w)∆M ,

where ε is the sign character. In other words, ∆M is an alternating polyno-
mial. Given any monomial xpyq = xp1

1 y
q1
1 · · ·xpn

n yqn
n with distinct exponents

(pi, qi), the alternation of xpyq is ±∆M for the corresponding M . If the
exponents are not distinct, then the alternation of the monomial xpyq is
zero. From this it is not hard to see that the set of all determinants ∆M

is a basis of the space of alternating polynomials C[x, y]ε. Another way
to see this is by identifying C[x, y]ε with the exterior power ∧nC[x, y].
Then the determinants ∆M are identified with the basis given by wedges
of monomials xpyq ∈ C[x, y].

Now, given a partition µ of n, consider the space spanned by all iterated
partial derivatives of ∆µ

Dµ = C[∂x, ∂y]∆µ.

This space is

− finite dimensional,
− closed under differentiation (i.e., it’s a Macaulay inverse system),
− Sn-invariant, and
− doubly graded: Dµ =

⊕
r,s(Dµ)r,s,

where (Dµ)r,s is the subset of doubly homogeneous polynomials in Dµ of
degree r in x and s in y. The Sn action on Dµ respects the double grading.

THEOREM 1.1. We have dimDµ = n!, and Sn acts on Dµ by the regular
representation.

A refinement of this theorem describes the Sn action on each doubly
homogeneous component (Dµ)r,s individually. Recall that every Sn-module
is a direct sum of irreducible ones, and that the irreducible Sn-modules V λ

(up to isomorphism) are indexed by partitions λ of n. The character of an
Sn-module will be denoted chV . The irreducible characters are χλ = chV λ.
The multiplicity of χλ in an arbitrary character φ is denoted 〈χλ, φ〉.

THEOREM 1.2. The generating function for the multiplicty of χλ in the
components (Dµ)r,s is given by

∑
r,s

trqs〈χλ, ch(Dµ)r,s〉 = K̃λ,µ(q, t),

the Kostka-Macdonald coefficient.
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The character multiplicities in the above formula are of course non-
negative integers, so this proves the Macdonald positivity conjecture.

COROLLARY 1.3. (Conjecture, Macdonald 1988). We have K̃λ,µ(q, t) ∈
N[q, t].

Example (the classical case). Take µ = (1n). The diagram of (1n) is

• (n− 1, 0)
...
• (1, 0)
• (0, 0)

Notice that the y variables have exponent zero in the determinant ∆(1n),
while the x variables form the Vandermonde matrix. Thus we have

∆(1n) = ∆(x) =
∏
i<j

(xi − xj),

the Vandermonde determinant. Now let

I = {f(x) : f(∂x)∆(x) = 0}
be the annihilating ideal of the inverse system generated by ∆(x). It is
equal to the ideal generated by all Sn-invariant polynomials in x without
constant term, or just by the power-sums pk =

∑n
i=1 x

k
i , that is,

I = (C[x]Sn
+ ) = (p1, . . . , pn).

We have isomorphisms of graded Sn-modules

D(1n)
∼= C[x]/I ∼= H∗(GLn/B).

On the far right here we have the cohomology ring of the flag variety for
GLn, which is well-known to have dimension n! and to carry the regular
representation of Sn. A corresponding result holds for any semi-simple
complex Lie group and its Weyl group.

The spaces Dµ provide one kind of bivariate, doubly graded generaliza-
tion of the above classical example. Another way to get such a generalization
is to consider the Macaulay inverse system defined by the bivariate analog
of the ideal I . Thus we set

J = (C[x, y]Sn
+ ) = (ph,k : 1 ≤ h+ k ≤ n).

Here ph,k =
∑n

i=1 x
h
i y

k
i is a polarized power-sum; they generate J by a

theorem of Weyl. The ideal J defines a Macaulay inverse system

DHn = {q ∈ C[x, y] : f(∂x, ∂y)q = 0 for all f ∈ J}.
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Or, more simply, DHn is the solution space of the system of differential
equations ph,k(∂x, ∂y)q = 0. We have

DHn
∼= C[x, y]/J

as (doubly) graded Sn-modules, so for character considerations the two are
interchangable. The ring on the right is the ring of coinvariants for the
diagonal action of Sn. The space DHn is the space of harmonics for this
action, or diagonal harmonics.

THEOREM 1.4. We have dimDHn = (n+ 1)n−1.

This theorem also has a refinement giving the character of (DHn)r,s in
every degree r, s. The formula involves Macdonald polynomials and will be
presented later. Garsia and I conjectured the above theorem around 1992.
Shorty afterwards we and others including Gessel and Stanley found various
combinatorial refinements to the conjecture. For example, (n+1)n−1 counts
rooted forests on the vertex set {1, . . . , n}. If we only look at the grading
of DHn by x-degree, we find that dim(DHn)d,− is the number of rooted
forests with d inversions (a pair of vertices i < j is an inversion if j is
on the path connecting i to the root of its tree). As another example, the
dimension of the space DHε

n of alternating diagonal harmonics turns out
to be the Catalan number Cn. A full discussion of these various conjectures
can be found in [14].

Armed with Procesi’s idea about the underlying geometry, I was even-
tually able to conjecture the full character formula for DHn. Garsia and
I then succeeded in proving that all the combinatorial conjectures would
follow from the master formula [10]. The proof is based on the known
specializations of Macdonald polynomials for q = 1 and for q = t, plus a
lot of work with symmetric function identities and Garsia’s theory of q-
Lagrange inversion. This is very beautiful, but could take several lectures
in itself, so I won’t delve further into it.

1.4. ALGEBRAIC GEOMETRY

We denote by
Hn = Hilbn(C2)

the Hilbert scheme of points in the affine plane C2. It is an algebraic variety
which parametrizes finite subschemes of length n in C2. You don’t really
need to know what those words mean, because (by definition) such sub-
schemes correspond one-to-one with certain ideals in the coordinate ring
of C2, and I’m going to tell you which ones they are. The coordinate ring



MACDONALD POLYNOMIALS AND HILBERT SCHEMES 7

of C2 is of course the ring R = C[x, y] of polynomials in the coordinate
functions x and y. We can describe the Hilbert scheme set-theoretically as

Hn = {I ⊆ R : dimCR/I = n}.
Thus the relevant ideals are those for which R/I is a finite-dimensional
vector space, of dimension n. In more geometric language, R/I has Krull
dimension zero, and length n. For such an ideal I , the locus V (I) ⊆ C2

defined by the vanishing of all polynomials in I is finite, with at most n
points. But V (I) may have fewer than n points, and then the local rings
(R/I)P at these points may be non-reduced (they may contain non-zero
nilpotent elements) and have length greater than 1. Defining the multiplicity
of R/I at P to be the length of the local ring (R/I)P , the sum of the
multiplicities is always equal to n. The multiplicities do not determine I in
general, so a point of Hn carries with it more information than just the set
V (I) and the multiplicities of its elements.

Examples. (1) The “generic” example of a point ofHn is the ideal I = I(S)
of all polynomials which vanish on a specified finite subset S ⊆ C2 of size
|S| = n. In this case, I is a radical ideal and R/I is reduced. Each point in S
has multiplicity one, and R/I can be identified with the ring of polynomial
functions on S. Since S is finite, every function is a polynomial function,
so R/I ∼= CS ∼= Cn, showing that I(S) is a legitimate element of Hn.

(2) The “most special” examples of points of Hn are the monomial
ideals. Let µ be a partition of n, and let

Iµ = C · {xpyq : (p, q) 6∈ d(µ)}
be the ideal generated, and in fact spanned, by the monomials whose
exponents (p, q) lie outside the diagram of µ. For example, we have

I(3,1) = (x2, xy, y3).

Then the monomials xpyq with (p, q) inside the diagram form a basis of
R/I , and since there are n of them, we have Iµ ∈ Hn.

Note that we always have (xn, yn) ⊆ Iµ, and therefore V (Iµ) = {0} as
a set. The only point is the origin, and its multiplicity is n. Here is the
way you should think of Iµ geometrically. The diagram of µ is an n-element
subset S = d(µ) of C2 and has an ideal I = I(S) ∈ Hn, as in example
(1) above. For any non-zero complex parameter u, the same goes for the
rescaled set uS, and we have a family of ideals Iu = I(uS) ∈ Hn. They form
a curve in Hn, and Iµ is their limit as u→ 0. In other words, Iµ and all the
ideals Iu lie on a single algebraic curve C1 ↪→ Hn, with Iµ corresponding
to u = 0. Thus Iµ should be thought of as the ideal of an “infinitesimal”
copy of the diagram d(µ) concentrated at the origin.
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We haven’t yet said anything about the structure of Hn as an algebraic
variety, that is, about how it acquires local coordinates. Roughly speaking,
its coordinates are defined similarly to the Plücker coordinates on a Grass-
mann variety. This will be explained in more detail later. For now, let’s
accept that it has a natural variety structure. It is a very special variety,
as indicated by the following famous and remarkable theorem.

THEOREM 1.5. (Fogarty [7]). The Hilbert scheme Hn is non-singular and
irreducible, of dimension 2n.

This theorem does not hold for the Hilbert scheme of points in Cd when
d > 2. We may mention here also that the “n!” theorem, Theorem 1.1,
does not hold in more than two sets of variables x, y, . . . , z, and these two
phenomena are connected with each other. One reason why elementary
attempts to prove the n! theorem have failed so far is that most ideas one
thinks of are equally applicable to three or more sets of variables—and
therefore must be wrong. In the geometric proof, the critical ingredient
that causes it to break down beyond the bivariate case is the role of Hn.

We remark that the irreducibility aspect of Forgarty’s theorem means
that the ideals I = I(S) in example (1) above are truly “generic,” in that
they form a dense (open) subset of Hn. Thus every I ∈ Hn can be realized
as a limit of ideals I(S), somewhat as we did above for Iµ (but not always
by a rescaling; that only gives the homogeneous ideals).

There is a map

σ:Hn → SnC2,

where SnC2 = C2n/Sn is the variety of unordered n-tuples JP1, . . . , PnK of
points in C2. It is defined by

σ(I) = Jm1 · P1, . . . , mk · PkK,

where V (I) = {P1, . . . , Pk} and mi = length(R/I)Pi is the multiplicity of
Pi. The map σ is called the Chow morphism, and is a morphism of algebraic
varieties (in fact, a projective morphism). Note that for JP1, . . . , PnK ∈
SnC2 with all Pi distinct, there is a unique I ∈ Hn such that σ(I) =
JP1, . . . , PnK, namely I = I(S), where S = {P1, . . . , Pn}. Thus the Chow
morphism is generically one-to-one, or birational, and since Hn is non-
singular it is a resolution of singularities of SnC2. Later we will see that it
can also be described as a certain blowup of SnC2.

Now we are ready for one last definition and our next theorem.
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DEFINITION 1.6. The isospectral Hilbert scheme Xn is the reduced fiber
product

Xn −−−→ C2ny y
Hn

σ−−−→ SnC2.

In other words, Xn is the closed subset {(I, P1, . . . , Pn) : σ(I) = JP1, . . . , PnK}
⊆ Hn × C2n, with the induced structure of reduced algebraic variety.

For the experts, we should point out that the scheme-theoretic fiber
product in this diagram, the closed subscheme of Hn × C2n whose ideal
sheaf is described by the equations σ(I) = JP1, . . . , PnK, is not reduced. By
definition, the ideal sheaf of Xn is the radical of the former ideal sheaf. We
don’t know how to give explicit local generators of the ideal sheaf of Xn,
although we will give an implicit description later on.

THEOREM 1.7. The isospectral Hilbert scheme Xn is normal, Cohen-
Macaulay, and Gorenstein.

We’ll discuss the terms normal, Cohen-Macaulay and Gorenstein later,
when they are needed. For now, they just mean that Xn, although singular,
has only very special singularities.

1.5. COMMUTATIVE ALGEBRA

Let E be any space (topological space, algebraic variety, whatever). We
define the polygraph Z(n, l) to be the following subset of En × E l:

Z(n, l) =
{

(P1, . . . , Pn, Q1, . . . , Ql) : Qi ∈ {P1, . . . , Pn} for all i
}
.

The reason for the name is as follows. Given a function f : {1, . . . , l} →
{1, . . . , n}, define the map

πf :En → E l

πf (P1, . . . , Pn) = (Pf(1), . . . , Pf(l)).

Its graph is the locus Wf ⊆ En × E l defined by

Wf = {(P1, . . . , Pn, Q1, . . . , Ql) : Qi = Pf(i) for all i}.
Clearly Z(n, l) =

⋃
f Wf is the union of these graphs, hence “polygraph.”

Now fix E = C2 and fix coordinates on En ×E l = C2n+2l

x, y, a,b = x1, y1, . . . , xn, yn, a1, b1, . . . , al, bl.
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In coordinates, Wf is the linear subspace, and algebraic subvariety, defined
by the equations

Wf = V (If ), If = (ai − xf(i), bi − yf(i) : 1 ≤ i ≤ l).

Therefore Z(n, l) is an arrangement of linear subpaces in C2n+2l, whose
coordinate ring as a (non-irreducible) algebraic variety is

R(n, l) = C[x, y, a,b]/I(n, l),

where I(n, l) =
⋂

f If is the ideal of all polynomials vanishing on Z(n, l)
(or equivalently, vanishing on Wf for all f).

THEOREM 1.8. For E = C2, the coordinate ring R(n, l) of the polygraph
Z(n, l) is a free C[y]-module.

By symmetry we could equally well have said that R(n, l) is a free C[x]-
module. The point is that it’s free over the polynomial ring in either one of
the two sets of coordinates on C2n.

1.6. CONCLUSION

We close with a hint as to the relationships between the various theorems
discussed above, and an outline of the remaining lectures. We shall see that
the n! theorem is a consequence of the theorem on the geometry of Xn,
Theorem 1.7. We can already indicate how the two are connected. Because
Hn is nonsingular and the projection ρ:Xn → Hn is finite, the Cohen-
Macaulay property of Xn is equivalent to ρ being flat. This means that
its scheme-theoretic fibers have constant length. Now for a generic point
I = I(S) in Hn, with S = {P1, . . . , Pn}, the fiber of ρ over I consists of
the points (I, Pw(1), . . . , Pw(n)), where (Pw(1), . . . , Pw(n)) is one of the n!
possible orderings of the points of S. These generic fibers can be identified
with reduced, regular Sn-orbits in C2n, and have length n!. By flatness,
every fiber has length n!, and carries the regular representation of Sn on its
coordinate ring (the Sn-character is constant, as well as the length). Since
V (Iµ) = {0}, the fiber of ρ over Iµ is (set-theoretically) concentrated at a
unique point Qµ = (I, 0, . . . , 0) ∈ Xn. The coordinate ring of the scheme-
theoretic fiber is a non-reduced local ring of the form Rµ = C[x, y]/Jµ, of
length n! and carrying the regular representation of Sn. It turns out that
the ideal Jµ is exactly the annihilating ideal of the Macaulay inverse system
Dµ, so that Rµ and Dµ are isomorphic as doubly-graded Sn-modules.

The proof of Theorem 1.7 is mostly geometric. Beginning with the next
lecture, we will work out some basic descriptive facts about Hn, Xn and a
nested Hilbert scheme Hn−1,n to be introduced later, and then go through
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this geometric proof. At one point, however, we will assume a technical
result: that the composite projection Xn → C2n → Cn, where the second
map is projection on the y coordinates, is flat. To justify this we need
the polygraph theorem, Theorem 1.8. We will see that Xn is a blowup of
C2n, and using Theorem 1.8, we will see that the Rees algebra defining the
blowup is a free C[y]-module. This implies the required flatness result.

The proof of the polygraph theorem has a completely different flavor
from the geometric argument, and we will come to it afterwards. In essence,
it is simple: to prove that R(n, l) is a free C[y]-module, we’ll construct a
free module basis. In practice, the inductive procedure for doing this is
rather horrific. What’s worse, the algorithm by which we construct the basis
elements does not immediately show that they are in R(n, l) at all! We will
construct them as functions on Z(n, l), but not obviously as regular func-
tions, i.e., functions defined by polynomials. So as an added complication
we must prove as we go along that our basis elements are regular functions.
We will not go through every detail of the proof in these lectures. What I
will try to do is show you enough of the general framework and method of
the construction so that you can more easily follow the details in [17], if
you are interested.

What I will also try to show you, which is not in [17], is that the
basis construction has some beautiful combinatorics. Specifically, the basis
elements will be indexed by simple combinatorial data from which you
can read off their degrees (like everything in this story, they are doubly
homogeneous) and other identifying information. As a consequence we get a
combinatorial interpretation of the doubly graded Hilbert series An,l(q, t) of
the ring R(n, l). This has the remarkable feature that although the Hilbert
series has an obvious symmetry An,l(q, t) = An,l(t, q), the combinatorial
description is utterly asymmetric. It also has the remarkable feature that
there is a formula for An,l(q, t) in terms of symmetric function operators
derived from Macdonald polynomials. There are now many such quantities
for which we can prove that the coefficients are non-negative by geometric
means, but we only have combinatorial interpretations for two of them.
One is An,l(q, t), and the other is the q, t-Catalan number Cn(q, t) whose
combinatorial interpetation was discovered by Jim Haglund and proved by
him and Garsia [8, 9]. Apart from the n! theorem, we still have no purely
combinatorial interpretation for K̃λ,µ(q, t).

After all this, we will return to Theorem 1.4 and its refinement giving
the full character formula for the diagonal harmonics. This is proved using
the foregoing geometric results and something new, namely, cohomology
vanishing theorems for tensor powers of the tautological bundle. Our main
result on Xn can be interpreted (as I will explain) as an isomorphism be-
tween Hn and a Hilbert scheme of regular orbits of Sn acting on C2n. Given



12

this isomorphism, we can apply an amazing recent theorem of Bridgeland,
King and Reid to completely characterize the derived category of coherent
sheaves on Hn. This has the tremendous virtue that it reduces the proofs
of the vanishing theorems we need to “mere calculations.” More exactly, it
reduces them to calculations that can be done with the aid of the polygraph
theorem! I intend to explain enough of this for you to get a taste of it, but
in a sketchier way than the other material, since the sheaf cohomology
techniques will be less accessible to many in the audience than the more
intuitive geometry and commutative algebra involved in the study of Hilbert
schemes and polygraphs.

2. Welcome to Hilbert schemes

In this lecture and the next we will explore how the properties of Hn and
Xn are connected with the n! theorem, and describe Hn and Xn in more el-
ementary terms. We will also meet the nested Hilbert scheme Hn−1,n which
will play a key role in the geometric proof of Theorem 1.7 by induction on
n.

2.1. HILBERT SCHEMES AS BLOWUPS

We recall some basics of algebraic geometry. Let R be a reduced (no non-
zero nilpotent elements), finitely generated algebra over C. If x1, . . . , xm

generate R, we have
R = C[x]/I,

where I is an ideal such that I =
√
I . Then R is the ring of regular functions

on the affine algebraic locus

V (I) ⊆ Cn,

that is, its coordinate ring. The locus V (I) can be identified with the set
of closed points of a scheme, denoted SpecR. You can and should think
of SpecR as just another name for the locus V (I)—in the present context
(reduced schemes of finite type over C) the two concepts are essentially
interchangeable.

A general reduced scheme X of finite type over C is a space which can
be covered by finitely many affine sets U = SpecR for various rings R of the
above kind. The notion of “regular function” on X is defined locally, that
is, the regular functions form a sheaf of rings of functions on X , denoted
OX . Thus OX(U) is the ring of regular functions on the open set U . If U
is an affine open set U = SpecR, then OX(U) = R. The ring OX(X) is
the ring of global regular functions defined on all of X . If X is not affine, it
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may have few global regular functions: for example, the only global regular
functions on projective space Pn are the constants.

Next let
S = S0 ⊕ S1 ⊕ · · ·

be a graded algebra, generated by S0 and S1. For f ∈ S1 define

Rf = S[f−1]0 = S0[f−1S1] ⊆ S[f−1].

The affine schemes Uf = SpecRf fit together to cover a schemeX projective
over SpecS0. This scheme is denoted ProjS. For each f , the canonical ring
homomorphism S0 → Rf induces a morphism of affine schemes Uf →
Spec S0. We have a canonical projective morphism X → Spec S0, given on
each set Uf by these morphisms.

Examples. (1) Take S = C[x0, . . . , xd] to be a polynomial ring with its
usual grading. We have

Rxi = C[x0/xi, . . . , xd/xi] (xi/xi = 1 omitted),

and Uxi = SpecRxi
∼= Cd is the affine d-space with coordinates x0/xi, . . .,

xd/xi. In this case
ProjS = Pd

is projective space, and the morphism

ProjS → Spec S0 = Spec C

is the trivial morphism from Pd to a point. A point of Pd given in projective
coordinates as p = (x0 : x1 : . . . : xd) belongs to the open set Uxi iff xi 6= 0.
Then rescaling to make xi = 1, we can write p = (x0/xi : . . . : 1 : . . . :
xd/xi), which exhibits x0/xi, . . . , xd/xi as coordinates on Uxi .

(2) If R is a ring and J ⊆ R is an ideal, take

S = R⊕ J ⊕ J2 ⊕ · · · ,
the Rees algebra of J. We can identify S with the subring R[tJ] of the
polynomial ring R[t] in an indeterminate t. The morphism

π:X → Y, X = ProjS, Y = SpecR

is the blowup of Y along the subscheme Z = V (J), or the blowup at the
ideal J. Among its properties:

− The ideal sheaf I ⊆ OX of the subscheme π−1(Z) ⊆ X is locally free
on one generator. Locally on Uf , for f ∈ S1 = J, it is given by the
ideal I(Uf) = (f) ⊆ Rf . Note that I(Uf) is by definition the ideal
generated by the image of J in Rf , but Rf contains an element g/f
for all g ∈ J, so f generates JRf .
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− Over the complement W = Y \ Z of Z, the blowup restricts to an
isomorphism π−1(W ) ∼= W .

We are going to construct the Hilbert scheme Hn and the isospectral
Hilbert scheme Xn as blowups. To this end we set

A = C[x, y]ε,

the space of alternating polynomials for the diagonal Sn action on C[x, y] =
C[x1, y1, . . . , xn, yn], and let

J = C[x, y]A

be the ideal generated by A. Recall that the polynomials ∆M for all M ⊆
N × N, |M | = n form a basis of A, and hence generate the ideal J. We
define spaces Ad in the obvious way for d > 0, and set A0 = C[x, y]Sn, to
ensure that we have

AjAk ⊆ Aj+k,

even when j or k is zero. Note that we also have

Jd = C[x, y]Ad.

THEOREM 2.1. We have

Hn
∼= ProjS,

where
S = A0 ⊕A1 ⊕ A2 ⊕ · · · ,

as a scheme over SpecA0 = SnC2, that is, the canonical projective mor-
phism for the Proj is the Chow morphism σ:Hn → SnC2. We also have

Xn
∼= ProjC[x, y][tJ],

the blowup of C2n at J.

Remarks. (1) For d even, Ad is contained in the ring of invariants A0 =
C[x, y]Sn as an ideal, and

S(2) = A0 ⊕A2 ⊕A4 ⊕ · · ·
is the Rees algebra of A2. A general fact about the Proj construction is
that ProjS(k) ∼= ProjS, so Hn is the blowup of SnC2 at the ideal A2. The
description as ProjS is preferable to the description as the blowup ProjS(2)

because it gives rise to the “correct” ample line bundle O(1) on Hn.
(2) The first part of Theorem 2.1 is proved in [15], and the part about

Xn in [17]. In the latter paper I also prove that J is equal to its radical,
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which implies the same for A2 = J ∩C[x, y]Sn. In fact J is the ideal of the
union of pairwise diagonals

⋃
i6=j

Eij ⊆ C2n, Eij = V (xi − xj , yi − yj),

and A2 is the ideal of its image in SnC2, the set of points JP1, . . . , PnK
with the Pi not all distinct. Thus Hn and Xn are the blowups of SnC2 and
C2n respectively, along the pairwise diagonals. This had been expected by
geometers but not proved before.

Example. For n = 2, we have J = (x1 − x2, y1 − y2), and these two
generators also generate A as an A0-module. The blowup ProjS is therefore
covered by two affines

Ux1−x2 = SpecA0[
y1 − y2
x1 − x2

], Uy1−y2 = SpecA0[
x1 − x2

y1 − y2
].

To see how this identifies with the Hilbert scheme H2, observe that the
latter is covered by two open sets

Wx = {I = (x2 − e1x+ e2, y − a1x− a0)},
Wy = {I = (y2 − e′1y + e′2, x − a′1y − a′0)}.

Since the Chow morphism maps H2 birationally on S2C2, all regular func-
tions on open sets in H2 can be identified with S2-invariant rational func-
tions of x1, x2, y1, y2. For the coordinates e1, e2, a0, a1 on Wx we have

e1 = x1 + x2 = x2
1−x2

2
x1−x2

e2 = x1x2 = x2
1x2−x1x2

2
x1−x2

a0 = x1y2−y1x2
x1−x2

= 1
2

(
y1 + y2 − y1−y2

x1−x2
(x1 + x2)

)

a1 = y1−y2

x1−x2
.

These equations can easily be verified when I = I(S), where S ⊆ C2 is a set
of two points with distinct x-coordinates x1 6= x2. All the above expressions
belong to the ring

A0[
y1 − y2
x1 − x2

] = C[x1 + x2, x1x2, y1 + y2,
y1 − y2
x1 − x2

],

and they generate it. This gives an explicit isomorphism between Wx and
Ux1−x2 , and there is a similar isomorphism between Wy and Uy1−y2 .
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2.2. THE UNIVERSAL FAMILY

We will outline the proof of Theorem 2.1, but we first need to introduce
the universal family

F ⊆ Hn × C2

π

y
Hn

defined by
F = {(I, P ) : P ∈ V (I)},

so that the fiber of the projection π:F → Hn over I ∈ Hn is the subscheme
V (I) ⊆ C2. In general, universal families over Hilbert schemes are not
reduced, but it follows from Fogarty’s theorem that F is reduced (F is
flat and generically reduced over the reduced and irreducible scheme Hn).
Hence the set-theoretic description of F above fully characterizes it. The
scheme structure of Hn is defined by a universal property of the universal
family F , whose details need not detain us here.

What we do need to explore is the way in which regular functions on F
can be interpreted as sections of a sheaf on Hn. Specifically, we define

B = π∗OF

to be the sheaf whose set of sections B(U) on any open set U ⊆ Hn is the
algebra of regular functions on the open set π−1(U) ⊆ F . Note that any
regular function f ∈ OHn(U) composes with π to give a regular function
π∗f = f ◦ π on π−1(U). This gives a homomorphism of sheaves of algebras
OHn → π∗OF = B, making B a sheaf of OHn -algebras. These constructions
of course make sense with any morphism of schemes in place of π. Since
F is a closed subscheme of Hn × C2, local coordinates on F are generated
by coordinates pulled back from Hn, together with coordinates x, y on C2.
This implies that B is generated as a sheaf of OHn-algebras by x and y.

Our particular morphism π is flat and finite. Finiteness means that B
is a coherent sheaf of OHn -modules, that is, B(U) is a finitely generated
OHn(U)-module. For a finite morphism, flatness means additionally that B
is a locally free sheaf of OHn -modules. In our case B is locally free of rank
n, the common length of all scheme-theoretic fibers of π.

Example. If e1, . . . , en, a0, . . . , an−1 are arbitrary complex numbers, the
ideal

I = (xn − e1x
n−1 + e2x

n−2 − · · · ± en, y − an−1x
n−1 − · · · − a1x− a0)

⊆ C[x, y] ⊆ R



MACDONALD POLYNOMIALS AND HILBERT SCHEMES 17

has the property that {1, x, . . . , xn−1} is a basis of R/I . These ideals form
an open set Wx ⊆ Hn, isomorphic to C2n, with coordinates e1, . . . , en,
a0, . . . , an−1. The coordinates on Wx × C2 are e, a, x, y. The open set

π−1(Wx) = F ∩ (Wx × C2)

in the universal family is defined by the two equations

xn − e1x
n−1 + e2x

n−2 − · · · ± en = 0,

y − an−1x
n−1 − · · · − a1x− a0 = 0

among these coordinates. We have OHn(Wx) = C[e, a], and the algebra of
sections B(Wx) is the C[e, a]-algebra C[e, a, x, y]/I(Wx), where I(Wx) is
generated by the two equations above. As a C[e, a]-module, B(Wx) is free
with basis {1, x, . . . , xn−1}. More generally, given any set M of n monomials
in x and y, if W ⊆ Hn is the open set whose points are ideals I such that
M is a basis of R/I , then B(W ) is a free OHn(W )-module with basis M .
Since Hn is covered by such sets W , this exhibits B as a locally free sheaf
of rank n.

Now if V is an algebraic vector bundle of rank n over any scheme X ,
the sections of V form a sheaf on X , and this sheaf is locally free of rank n.
Any vector space basis of the fiber V (x) over a point x ∈ X is also a free
OX(U)-module basis of V (U), for some open neighborhood U containing x.
Conversely, every locally free sheaf V of rank n can be realized as the sheaf
of sections of an algebraic vector bundle. In precise language, the fiber of
this vector bundle at x is V ⊗OX

kx, where kx = OX,x/x is the residue field
of the local ring of X at the point x. We will abuse notation and write V
both for the vector bundle and its sheaf of sections.

Subjecting the locally free sheaf B to these considerations identifies it
with the tautological bundle on Hn whose fiber at I is the n dimensional
vector space R/I . As such, B is a quotient bundle of the trivial bundle
C[x, y]⊗C OHn with constant fiber R = C[x, y].

We now turn to the proof of Theorem 2.1. Given M ⊆ N × N with
|M | = n, set

BM = {xpyq : (p, q) ∈M},
and let WM ⊆ Hn be the open affine subset

WM = {I ∈ Hn : BM is a basis of R/I}, (2)

so that B(WM ) is free with basis BM . Since B(I) = R/I , the fiber of the
tensor power B⊗n at a point I ∈ Hn can be identified with

C[x, y]/(I(x1, y1) + · · ·+ I(xn, yn)),
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and the fiber of the exterior power ∧nB can be identified with the image
of A = C[x, y]ε in the above space. In particular, every ∆L ∈ A defines a
global section of ∧nB, and the section ∆M is nowhere-vanishing on WM .
Now ∧nB is a vector bundle of rank 1, or line bundle, so the ratio ∆L/∆M ∈
OHn(WM ) is a well-defined regular function on WM , for every ∆L.

At a point I = I(S) ∈WM , where S = {P1, . . . , Pn} for n distinct points
Pi ∈ C2, the interpretation of ∆L/∆M as a ratio of sections in B(WM )
coincides with its interpretation as a rational function of x, y. Since such
ideals I(S) form a dense set, all identities among the functions ∆L/∆M

which hold in the ring of rational functions

C[∆L/∆M : all L]

also hold in O(WM ), giving rise to a ring homomorphism

C[∆L/∆M : all L] → O(WM) (3)

and corresponding morphism of schemes

WM → Spec C[∆L/∆M : all L] = U∆M
⊆ ProjS.

Here S =
⊕

dA
d is as in Theorem 2.1. These morphisms combine to give a

morphism
α:Hn → ProjS.

We are to show that α is an isomorphism.
Every ideal I ∈ WM is generated, and even spanned as a vector space,

by elements of the form

xhyk −
∑

(p,q)∈M

chk
pqx

pyq. (4)

The coefficients chk
pq are regular functions onWM , since they give the section

xhyk ∈ B(WM ) in terms of the basis BM . Moreover, they generate the
coordinate ring of WM . The reason for this is that the universal family
is defined over WM by the vanishing of the polynomials in (4). One way
of expressing the universal property of Hn and F , which defines Hn as a
scheme, is that once we have enough coordinates to describe the ideal of the
universal family, we have them all. A look back at the last example may
clarify this somewhat: the coordinates e1, . . . , en are the chk

pq for (h, k) =
(n, 0), xhyk = xn, while a0, . . . , an−1 are the chk

pq for (h, k) = (0, 1), xhyk =
y.

For I = I(S) with S = {P1, . . . , Pn} as before, we must have

xh
i y

k
i =

∑
(p,q)∈M

chk
pq x

p
i y

q
i
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for all i = 1, . . . , n. Fixing h, k, these give n equations in n “unknowns”
chk
pq , whose solution is given by Cramer’s rule as

chk
pq = ∆L/∆M , L = M ∪ {(h, k)} \ {(p, q)}.

Since the chk
pq generate O(WM), this shows that the ring homomorphism in

(3) is surjective, so α is a closed embedding. On the generic locus, where
I = I(S), both the Chow morphism and the morphism ProjS → SnC2

restrict to isomorphisms, and hence so does α. Since the generic locus is
dense, this implies that the closed embedding α is an isomorphism.

We have now proven that Hn
∼= ProjS, and want to prove that Xn =

ProjT , where T = C[x, y][tJ]. Observe that S is a subring of T (in fact,
S is the ring of invariants T Sn if we agree to make Sn act on t by the
sign character). Since Jd = C[x, y]Ad, we see that C[x, y] and S together
generate T , so ProjT is a closed subscheme of ProjS × Spec C[x, y] =
Hn × C2. We have a commutative diagram

ProjT −−−→ C2ny y
Hn = ProjS −−−→ SnC2.

Since ProjT is reduced, this implies ProjT ⊆ Xn. A geometric argu-
ment using the irreducibility of Hn shows that Xn is also irreducible (see
[17]). Since ProjT is closed in Xn and contains the generic locus, we have
ProjT = Xn. 2
Remarks. (1) For d > 2 the Hilbert scheme Hilbn(Cd) is not irreducible in
general. It has a unique irreducible component which maps birationally on
SnCd, namely, the closure of the generic locus. The proof above adapts to
show that this generic component is the blowup of SnCd at the ideal A2 ⊆
C[x, y, . . . , z]Sn , where A = C[x, y, . . . , z]ε as in the d = 2 case. Similarly,
the analog of Xn, the reduced fiber product of the generic component with
Cdn over SnCd, is the blowup of Cdn at the ideal J = C[x, y, . . . , z]A. What
we don’t know is whether J and A2 are equal to their radicals, that is, the
ideals of the pairwise diagonals, for d > 2. We conjecture that this is true.

(2) Theorem 2.1 provides us with a compact, explicit description of
the coordinate rings of affine open sets in Hn and Xn. Namely, the open
set WM in (2) has coordinate ring C[∆L/∆M : all L], and (as follows
easily) the preimage of WM by the projection Xn → Hn has coordinate
ring C[x, y,∆L/∆M ]. To cover Hn it suffices to take M to be the diagram
of a partition µ. Then the monomial ideal Iµ is the point of Wµ defined by
the vanishing of all the coordinates ∆L/∆µ, L 6= µ. The scheme-theoretic
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fiber of Xn over Iµ therefore has coordinate ring

C[x, y,∆L/∆µ]/(∆L/∆µ), (5)

that is, the quotient ring of C[x, y] obtained by adjoining the fractions
∆L/∆µ and then modding them out. The content of Theorem 1.7 boils
down to the statement that the ring in (5) is Gorenstein. Later we will see
that it is none other than the ring

C[x, y]/Jµ, (6)

where Jµ is the annihilating ideal of the Macaulay inverse system generated
by ∆µ. One might hope to give an elementary proof of Theorems 1.1 and
1.7 by showing directly that the two rings in (5) and (6) are the same, but
so far this has not been done.

3. Towards the proof of the n! theorem

3.1. AN EXAMPLE: N = 3

Let’s take a look at the picture for n = 3 over a non-trivial affine open
subset of the Hilbert scheme. First, what do points of H3 look like, viewed
as subschemes S ⊆ C2 of length 3? There are four kinds:

− S = three reduced points.
− S = a double point on a line L plus one reduced point. The scheme

structure detects the slope of L.
− S = a triple point on a curve C. The scheme structure detects the

slope and curvature of C at the triple point.
− S = a non-curvilinear triple point, for example I = I(2,1) = (x, y)2.

This example is unique up to translation.

Now we focus attention on the open set

U(2,1) =
{
I ∈ H3 : {1, x, y} is a basis of R/I

}
.

In this example it happens that U(2,1) is the set of non-collinear subschemes
S. In other words, a subscheme S as above is not in U(2,1) if S is either three
collinear reduced points, or a double point and a reduced point on the same
line, or a triple point on a line. We can also describe U(2,1) as the basin of
attraction for the fixed point I(2,1) under the contraction x 7→ tx, y 7→ ty, as
t→ 0. All non-collinear subschemes contract to I(2,1) in the limit (collinear
ones contract to a triple point at 0 on a line through the origin).

Since the tautological bundle B has fibers B(I) = R/I , the open set
U(2,1) is the non-vanising locus of the section 1 ∧ x ∧ y of the line bundle
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∧3B. In terms of our blowup construction, this section is represented by
the alternating polynomial ∆(2,1)(x, y). The algebra of regular functions on
U(2,1) is therefore

C[∆L/∆(2,1)].

Another way to describe the regular functions on U(2,1) is a follows. Every
I ∈ U(2,1) has generators

x2 − ax− by − g (7)
xy − cx− dy − h (8)
y2 − ex− fy − j (9)

for some complex parameters a, b, . . . , j. Modulo the above generators we
can reduce a monomial, say x2y, in more than one way:

x2y → y(ax+ by + g) →



a(cx+ dy + h)
+b(ex+ fy + j)

+gy

or

x2y → x(cx+ dy + h) →



c(ax+ by + g)
+d(cx+ dy + h)

+hx.

Equating these yields conditions on the parameters. Doing this for reduc-
tions of xy2 as well, we find

h = be− cd
g = b(c− f) + d(d− a)
j = e(d− a) + c(c− f).

The remaining parameters serve as coordinates on U(2,1):

U(2,1) = Spec C[a, b, . . . , f ] ∼= C6.

We have the identification

C[a, b, . . . , f ] = C[∆L/∆(2,1)],

given by expressions for a, b, . . . , f such as

a = ∆L/∆(2,1) for L = {(2, 0), (0, 0), (0, 1)}.

To get this expression for a, we note that a is the coefficient of x in x2

(mod I), so that applying Cramer’s rule, we obtain L as the diagram of
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µ = (2, 1) with the point (1, 0), corresponding to x, deleted and replaced
by the point (2, 0), corresponding to x2:

L =
•
◦
• •

.

Now let’s look at X3, and specifically at the open set

ρ−1(U(2,1)) via ρ:X3 → H3.

Its coordinate ring is C[x, y,∆L/∆(2,1)], or C[x1, y1, . . . , x3, y3, a, b, . . . , f ]
modulo some relations which are not so easy to determine except by brute
computation. We claim that X3 is locally Cohen-Macaulay and Gorenstein
at the unique point

Q(2,1) = (I(2,1), 0, 0, 0)

lying above I(2,1). The coordinates a, b, . . . , f form a system of parameters,
so the Cohen-Macaulay property is that the ring

C[x, y,∆L/∆(2,1)] (10)

is a free C[a, b, . . . , f ] module, necessarily of rank 6 = 3! because the finite
morphism ρ has degree 6. To establish this, locally at Q(2,1) (and in this
case also globally on U(2,1) because it is the basin of attraction for I(2,1)),
we look at the quotient ring

C[x, y,∆L/∆(2,1)] /(∆L/∆(2,1)) = C[x, y,∆L/∆(2,1)]/(a, b, . . . , f)
= C[x, y]/J

for some ideal J. Geometrically, this is the coordinate ring of the scheme-
theoretic fiber ρ−1({I(2,1)}). It has Krull dimension zero and vector space
dimension (or length) ≥ 6, with equality if and only if X3 is locally Cohen-
Macaulay. What are some elements of J? For one thing, we have C[x, y]Sn

+ ⊆
J, for if p ∈ C[x, y] is Sn-invariant and homogeneous of degree > 0, then
∆(2,1)p is in the linear span of {∆L : L 6= µ}. For another, we have x2

i , xiyi,
y2
i ∈ J for i = 1, 2, 3 because the generators of I in (7) vanish on setting
x = xi, y = yi, and all but their leading terms belong to (a, b, . . . , f). As it
turns out, the full ideal J is equal to

J = Jµ = {p : p(∂x, ∂y)∆(2,1) = 0}
for µ = (2, 1). This can be verified with some effort by direct calculation of
both J and Jµ, and shows all of the following:

− The n! theorem holds for µ = (2, 1), since dimC[x, y]/Jµ = 3! = 6.
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− X3 is locally Cohen-Macaulay at Q(2,1).
− X3 is Gorenstein at Q(2,1). The reason for this is that C[x, y]/Jµ is a

Gorenstein Artin graded algebra. In fact a graded Artin algebra C[x]/I
is Gorenstein if and only if I is the annihilating ideal of a Macaulay
inverse system generated by one element, which is the case for Jµ.
Since C[x, y]/J is the quotient of our Cohen-Macaulay ring in (10)
by a parameter ideal, the Gorenstein property of the latter ring is
equivalent to that of C[x, y]/J.

3.2. THE IDEAL SHEAF OF Xn

Our next order of business is to describe Xn as a closed subvariety of
Hn × C2n by specifying its ideal sheaf, that is the subsheaf of OHn×C2n

consisting of regular functions that vanish onXn. To do this we first observe
that if (I, P1, . . . , Pn) is a point of Xn, then each Pi belongs to V (I), so
(I, Pi) is a point of the universal family F . In other words, Xn is a subset
of the n-fold fiber product

Fn/Hn = {(I, P1, . . . , Pn) : Pi ∈ V (I) for all i} ⊆ Hn × C2n.

Now we will describe the ideal sheaf of Xn as a subsheaf of the sheaf of
regular functions on Fn/Hn. More precisely, we will describe its pushdown
to Hn. We denote the projection of F onto Hn by π, as before, and (abusing
notation slightly) we denote by ρ the projection onto Hn of Hn × C2n,
or of its subschemes Xn or Fn/Hn. The projections π and ρ are affine,
meaning that the inverse image of any affine open subset U ⊆ Hn is again
affine. Hence B = π∗OF contains full information about the sheaf of regular
functions OF , and the same goes for ρ∗OFn/Hn

and ρ∗OXn . We have

B⊗n = ρ∗OFn/Hn

and we define
P = B⊗n/J = ρ∗OXn .

Our problem is to determine the sheaf of ideals J in the sheaf of OHn-
algebras B⊗n. This problem is solved by the following result.

PROPOSITION 3.1. Let

φ:B⊗n → (B⊗n)∗ ⊗ ∧nB

be the homomorphism of vector bundles (or of their sheaves of sections)
induced by the pairing

B⊗n ⊗B⊗n → ∧nB



24

which is multiplication in B⊗n followed by alternation:B⊗n → ∧nB. Then
the ideal sheaf J of Xn is the kernel of φ:

J = ker φ ; P ∼= imφ.

Proof. Let
Θεf =

∑
w∈Sn

ε(w) wf (11)

be the alternation operator. By definition, a section g of B⊗n belongs to
kerφ iff Θε(gs) = 0 for all s. Note that the regular function on (an open set
in) Fn/Hn represented by any alternating section of B⊗n must vanish at
every point (I, P1, . . . , Pn) such that Pi = Pj for some i 6= j. Furthermore,
Fn/Hn is the union of the locus V consisting of such points, and Xn.
Suppose g belongs to J . Then so does Θε(gs), so the latter vanishes on
both V and Xn. Therefore it vanishes identically as a section of ∧nB, and
g belongs to ker φ. Conversely, suppose g does not belong to J , so g does
not vanish identically on Xn. We can find a point x = (I, P1, . . . , Pn) in
Xn with all Pi distinct and g(x) 6= 0, since the generic locus is dense in
Xn. Multiplying g by a suitable s, we can arrange that gs(wx) = 0 for all
1 6= w ∈ Sn, but gs(x) 6= 0. Then Θε(gs)(x) 6= 0, so g 6∈ kerφ. 2

3.3. THE ANNIHILATING IDEAL OF ∆µ

The significance of Proposition 3.1 is that its implicit description of the ideal
sheaf J closely parallels a similar implicit description of the annihilating
ideal Jµ ⊆ C[x, y] for the Macaulay inverse system Dµ generated by ∆µ.

PROPOSITION 3.2. Let

Jµ = {p ∈ C[x, y] : p(∂x, ∂y)∆µ = 0}.
Then p belongs to Jµ if and only if the coefficient of ∆µ in Θε(ps) is zero,
for all s ∈ C[x, y].

Here Θε is the alternation operator in (11). It makes sense to speak of
the coefficient of ∆µ in Θε(ps), because the polynomials ∆M form a basis
of C[x, y].

Proof. The coefficient Θε(ps)|∆µ is, apart from a fixed scalar factor,
just the constant term of s(∂x, ∂y)p(∂x, ∂y)∆µ. By Taylor’s theorem, this
vanishes for all s if and only if p(∂x, ∂y)∆µ = 0. 2
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We can reformulate the above proposition in the following suggestive
way. Recall that Iµ ∈ Hn denotes the ideal spanned by all monomials not
in the diagram of µ. We see immediately that in the ring

B⊗n(Iµ) = C[x, y]/(Iµ(x1, y1) + · · ·+ Iµ(xn, yn)),

the image of ∆L(x, y) vanishes for all L 6= µ, while the image of ∆µ spans
the one-dimensional space ∧nB(Iµ). Hence the composite map

C[x, y] → B⊗n(Iµ) → ∧nB(Iµ) ∼= C

is in effect given by Θε(−)|∆µ . This yields:

COROLLARY 3.3. The ideal Jµ is the kernel of the composite map

C[x, y] → B⊗n(Iµ) →
φ(Iµ)

B⊗n(Iµ)∗ ⊗ ∧nB(Iµ).

It might appear that Proposition 3.1 and Corollary 3.3 immediately
imply that Jµ is (modulo Iµ(x1, y1) + · · ·+ Iµ(xn, yn)) the fiber of J and
that C[x, y]/Jµ is the fiber of P at the point Iµ ∈ Hn. In reality, the matter
is not quite so simple. For one thing, we don’t know yet that P and J are
locally free, i.e., that they are the sheaves of sections of vector bundles.
Absent this, their “fibers” at Iµ are not necessarily what intuition would
suggest. Even if we assume that they are locally free, if we carefully examine
the passage from sheaves of sections to fibers, the only conclusion we can
draw immediately is that Jµ contains the fiber J (Iµ). Nevertheless, the
following facts do hold:

− P (and hence also J ) is locally free if and only if Xn is Cohen-
Macaulay. This follows because Hn is non-singular and ρ:Xn → Hn is
finite; in this situation, the local freeness of P = ρ∗OXn is essentially
the definition of the Cohen-Macaulay property.

− Generically, P is locally free of rank n!, because the map ρ is generi-
cally n!-to-one. When I = I(S), there are n! choices for the ordering
P1, . . . , Pn of the distinct points of S.

− It follows that every fiber of the linear map φ has rank at most n!, and
that coker φ, P and J are all locally free in a neighborhood of I ∈ Hn

if and only if φ(I) has rank n!.
− The ring C[x, y]/Jµ is Gorenstein. More generally, a graded Artin al-

gebra C[x]/J is Gorenstein if and only if J is the annihilating ideal of
a Macaulay inverse system generated by one element [6]. If you like,
you may take this as the definition of Gorenstein for a graded Artin
algebra; then a general graded algebra is Gorenstein if it is Cohen-
Macaulay and its quotient by any (equivalently every) homogeneous
parameter ideal is Gorenstein Artin. By the way, Artin means Krull
dimension zero, or finite dimension as a vector space.
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Using these facts, one can deduce from Proposition 3.1 and Corollary 3.3
the following theorem.

THEOREM 3.4. Let Qµ = (Iµ, 0, . . . , 0) be the unique point of Xn lying
over Iµ ∈ Hn. The following are equivalent:

(1) Xn is locally Cohen-Macaulay and Gorenstein at Qµ;
(2) the n! theorem (Theorem 1.1) holds for the partition µ.

When these conditions hold, moreover, Jµ is the ideal of the scheme-theoretic
fiber ρ−1(Iµ) ⊆ Xµ, that is, we have C[x, y]/Jµ

∼= P (Iµ).

Proof. First assume (1) holds. Then P and J are locally free, and Jµ

contains J (Iµ). Moreover, P (Iµ) = B⊗n(Iµ)/J (Iµ) is a Gorenstein Artin
ring on which Sn acts by the regular representation. Its socle, or unique
minimal ideal, is one-dimensional, so Sn must necessarily act on it by the
sign representation. If Jµ is not equal to J (Iµ), then Jµ must contain the so-
cle, and hence C[x, y]/Jµ does not contain a copy of the sign representation
of Sn. In particular, we must have ∆µ ∈ Jµ, which is absurd.

Conversely, assume (2) holds. Then φ(Iµ) has rank n!, so Xn is locally
Cohen-Macaulay at Iµ. Furthermore, J (Iµ) = Jµ, so P (Iµ) ∼= C[x, y]/Jµ is
Gorenstein, which implies Xn is Gorenstein at Iµ.

We have now tied together two of our seemingly unrelated theorems
from Lecture 1, namely, the n! theorem, and the geometric theorem that
Xn is Gorenstein. In fact, we have shown that the latter theorem implies
the n! theorem.

3.4. THE NESTED HILBERT SCHEME

For ideals In−1 ∈ Hn−1, In ∈ Hn, the condition that In ⊆ In−1 is a closed
condition on Hn−1 ×Hn, i.e., it is defined by polynomial equations in local
coordinates (much like those for the corresponding condition on a product
of Grassmann varieties). Hence we can define the nested Hilbert scheme

Hn−1,n ⊆ {(In−1, In) : In ⊆ In−1} ⊆ Hn−1 ×Hn

as a closed subscheme. Geometrically, it parametrizes pairs of finite sub-
schemes Sn−1 ⊆ Sn ⊆ C2, of lengths n − 1 and n. There is a remarkable
extension of Fogarty’s theorem to the nested case.

THEOREM 3.5. (Tikhomirov, unpublished; see [4] for proof). The nested
Hilbert scheme Hn−1,n is non-singular and irreducible, of dimension 2n.
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One can define more general nested Hilbert schemes parametrizing flags
of subschemes of various lengths. Cheah [4] has shown that of these onlyHn

and Hn−1,n are non-singular, apart from some small exceptions like H1,2,3.
We will prove Theorem 1.7, the Gorenstein property ofXn, by induction

on n, using the nested Hilbert scheme to provide the geometric link between
Xn−1 and Xn. For this we need to introduce the nested isospectral Hilbert
scheme Xn−1,n. But first we must discuss Hn−1,n a little more. Given a
pair In ⊆ In−1 in Hn−1,n, there is a unique distinguished point P ∈ V (In)
such that the length of (R/In)P is exceeds the length of (R/In−1)P by
1. In terms of the Chow morphisms, if σn−1(In−1) = JP1, . . . , Pn−1K, then
σn(In) = JP1, . . . , Pn−1, P K, where P is the distinguished point. Another
way to look at this is that the R-module In−1/In has length 1, hence is
isomorphic to R/m = C[x, y]/(x− xn, y − yn) for some maximal ideal m.
Then (xn, yn) are the coordinates of P . We get a Chow morphism

σn−1,n:Hn−1,n → Sn−1C2 × C2

defined by
σn−1,n(In−1, In) = (σn−1(In−1), P ).

Both maps Hn−1,n → Sn−1C2 and Hn−1,n → SnC2 induced by the Chow
morphisms σn−1 and σn composed with the projections on Hn−1 and Hn

factor through σn−1,n.

DEFINITION 3.6. The nested isospectral Hilbert scheme Xn−1,n is the
reduced fiber product

Xn−1,n −−−→ C2ny y
Hn−1,n −−−→ Sn−1C2 × C2.

(12)

In other words, the points of Xn−1,n are tuples (In−1, In, P1, . . . , Pn),
where In ⊆ In−1, σn(In) = JP1, . . . , PnK, and Pn is the distinguished point.
Note that the reduced fiber product Y in the diagram

Y −−−→ Hn−1,ny y
Xn−1 −−−→ Hn−1

(13)

can be identified with the set of tuples (In−1, In, P1, . . . , Pn−1) such that
In ⊆ In−1 and σn−1(In−1) = JP1, . . . , Pn−1K. Then Xn−1,n is the graph of
the morphism Y → C2 sending (In−1, In, P1, . . . , Pn−1) to its distinguished
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point P = Pn. Thus the above fiber product Y provides an alternative
description of Xn−1,n.

We can now indicate roughly how the proof of Theorem 1.7 goes. We
consider the larger diagram

Y = Xn−1,n
g−−−→ Xn

↘
yy Hn−1,n −→ Hny

Xn−1 −→ Hn−1

(14)

We are to prove that Xn is Gorenstein, and we will assume the result for
Xn−1 by induction. Then the bottom arrow in (14) is flat with Gorenstein
fibers, since it is finite and Hn−1 is non-singular. Hence the same holds for
the diagonal arrow if we take Y to be the scheme-theoretic fiber product.
Since Hn−1,n is non-singular, the scheme-theoretic fiber product is again
Gorenstein. It is generically reduced, hence reduced, hence equal toXn−1,n.
This shows that Xn−1,n is Gorenstein. The morphism g : Xn−1,n → Xn

given by the top arrow in (14) is projective and birational, allowingXn−1,n

to play the role of a partial desingularization of Xn. To complete the proof
we will use duality for the morphism g to deduce that Xn is Gorenstein, as
desired. In order to do this we will need the identity

Rg∗OXn−1,n = OXn

for the derived functor Rg∗ of the sheaf pushforward functor g∗. At the end
of the day, to establish this identity we will need know something more
about Xn than what follows merely from the inductive set-up. What that
something is and how to prove it will be taken up in the next lecture.

4. The main theorem and the polygraph theorem

4.1. MAIN THEOREM

We start by adding some details to the outline of the proof of Theorem 1.7
given at the end of the last lecture. We want to prove that Xn is Gorenstein
by induction on n, but we need to refine the induction hypothesis a bit.

The Proj construction gives rise to a line bundle denoted O(1) on any
X = ProjS, such that the elements of S1 represent global sections of O(1).
The k-th tensor power of O(1) is denoted O(k); if k is negative, this means
the (−k)-th tensor power of the dual O(−1) = O(1)∗. In the case of Hn
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and Xn, it follows from the proof of Theorem 2.1 that O(1) = ∧nB. Every
Gorenstein scheme X possesses a canonical line bundle (more on this below)
which in the case of a non-singular scheme is the usual canonical line bundle,
i.e., the sheaf of exterior differential d-forms, where d = dimX . What we
will prove by induction is that

Xn is Gorenstein, with canonical line bundle equal to O(−1).

As explained in the last lecture, we can deduce from the induction
hypothesis for n − 1 that Xn−1,n, is Gorenstein. In fact we can do a little
better. The relative canonical line bundles for the bottom arrow and the
diagonal arrow in (14) are the same. On Hn−1,n and Xn−1,n, we write
O(k, l) for the tensor product of the pullback of O(k) from Hn−1 with the
pullback of O(l) from Hn. By an explicit calculation in [17], the canonical
sheaf of Hn−1 is O (this was well-known) and that of Hn−1,n is O(1,−1)
(this is new). By the induction hypothesis and the calculation for Hn−1,
the relative canonical sheaf for the bottom and diagonal arrows in (14)
is O(−1, 0). Hence by the calculation for Hn−1,n the canonical sheaf on
Xn−1,n is O(0,−1), that is, the pullback g∗OXn(−1) of O(−1) from Xn.

The key to the proof is to show that for the projection g:Xn−1,n → Xn

we have
Rg∗OXn−1,n = OXn .

Here Rg∗ is the derived functor of the pushforward g∗. For present purposes,
everything you need to know about derived functors and derived categories
can be summed up as follows.

− On every scheme X of finite type over a field there is a complex of
sheaves ωX , which is a dualizing object in the derived category. This
means that the derived functor DX = RHom(−, ωX) satisfies DX ◦
DX = id. Although a dualizing object is not unique, there is a canonical
preferred choice (up to isomorphism in the derived category).

− IfX is Cohen-Macaulay and d-dimensional, then ωX reduces to a single
sheaf concentrated in degree −d. If X is also Gorenstein, that sheaf is
the canonical line bundle on X . The converse statements also hold.

− Duality theorem: if g: Y → X is a proper (e.g., projective) morphism,
then the derived functor Rg∗ commutes with duality, i.e., DX ◦Rg∗ =
Rg∗ ◦ DY .

− Projection formula: if L is a locally free sheaf on X , then Rg∗(A ⊗
g∗L) = (Rg∗A) ⊗ L.

Now let’s grant for a moment that Rg∗OXn−1,n = OXn . We have established
that Xn−1,n is Gorenstein with canonical sheaf g∗OXn(−1), and hence its
dualizing complex is this sheaf, concentrated in degree −2n. The morphism
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g is projective. On the one hand, using the projection formula with A =
OXn−1,n and L = OXn(−1), we deduce

Rg∗g∗OXn(−1) = OXn(−1).

On the other hand, using the duality theorem, we deduce

Rg∗ωXn−1,n = ωXn .

Together, these two identites show that ωXn is the sheaf OXn(−1) concen-
trated in degree −2n. Hence Xn is Gorenstein with canonical sheaf O(−1),
which is what we wanted to prove.

How do we show that Rg∗OXn−1,n = OXn? First of all, this is a local
question on the target Xn of g. On the locus where P1, . . . , Pn are not all
equal, Xn is locally isomorphic to a product Xk ×Xl for some k, l < n, and
g is locally isomorphic to g′:Xk×Xl−1,l → Xk ×Xl. This is intuitively easy
to understand and not hard to prove, so I refer you to [17] for the details.
We can assume as part of the induction that Rg′∗O = O, so we only have
to worry about the situation in the neighborhood of points of Xn where
P1, . . . , Pn all coincide. In particular, we only have to worry about what
happens where y1 − y2, y2 − y3, . . . , yn−1 − yn all vanish.

Now there is a standard technique for dealing with this situation using
local cohomology. Again I refer you to [17] for technical details, but the
upshot is that to extend the identity Rg∗OXn−1,n = OXn from the comple-
ment of V (y1 − y2, . . . , yn−1 − yn) to the whole of Xn and Xn−1,n we only
need to establish three facts:

(a) The sequence y1 − y2, . . . , yn−1 − yn is a regular sequence in the local
ring of OXn at every point x ∈ V (y1 − y2, . . . , yn−1 − yn),

(b) The same holds in OXn−1,n , and
(c) The fibers of g have dimension less than n− 2.

To complete your confusion, we define another morphism

α:Hn−1,n → F (15)

sending (In−1, In) to (In, P ). Since the distinguished point can be any point
of In (for some choice of In−1), the image of α is indeed F . Generically,
when In = I(S), we must have In−1 = I(S \ {P}), so the fiber of α over
(I(S), P ) has just one point. Thus α is birational (it’s also projective). The
fibers of g are actually fibers of α, as you will see if you understand the
remarks following Definition 3.6. The fiber of α over a point (I, P ) is the
projective space P(A) where A is the socle of the local ring (R/I)P , that
is, the annihilator of the maximal ideal. Its dimension must be maximized
at a monomial ideal. Hence the maximum fiber dimension is one less than
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the maximum number of corners of the diagram of a partition µ of n. For
n ≥ 4, the number of corners of µ is always less than n − 1, so fact (c)
holds.

For fact (b), we already know thatXn−1,n is Cohen-Macaulay, so we only
have to show that the locus V (y1−y2, . . . , yn−1−yn) has codimension n−1 in
Xn−1,n. Then it is a local complete intersection, and, by the general theory
of Cohen-Macaulay rings, the generators of its ideal form a regular sequence.
The required dimension estimate follows from the cell decomposition of
Hn−1,n in [4].

The heart of the matter is fact (a). It is true that V (y1−y2, . . . , yn−1−yn)
has codimension n− 1 in Xn, but this information is useless since we don’t
know in advance that Xn is Cohen-Macaulay. What we need is the following
lemma.

LEMMA 4.1. The map Xn → Cn = Spec C[y], given by the composite
of the blowup map Xn → C2n with the projection C2n → Cn on the y
coordinates, is flat.

Granting this lemma, the proof is otherwise complete, except that we
only have fact (c) for n ≥ 4. For n = 1, 2, 3, we need to verify the induction
hypothesis directly. The action of (C∗)2 on C2 as the group of 2×2 diagonal
matrices induces an action of (C∗)2 on Xn in which every point has some
Qµ in the closure of its orbit. Using this fact, we can reduce the problem
of showing that Xn is Gorenstein to the local problem at the distinguished
points Qµ. Then, using Theorem 3.4, we need only verify the n! theorem
for each ∆µ with |µ| ≤ 3. This is an easy computation which I invite you to
carry out by hand. The only case you really have to check is µ = (2, 1), since
the others are classical Vandermonde determinants in one set of variables.

The multiplication and alternation pairing B⊗n ⊗B⊗n → ∧nB = O(1)
in Proposition 3.1 induces a pairing P ⊗ P → O(1). Once we know Xn is
Gorenstein, P becomes a vector bundle and the induced pairing is perfect
on every fiber. By the duality theorem for the finite morphism ρ:Xn → Hn

this implies that ωXn = O(−1). So we have verified the full induction
hypothesis, as we stated it, for n = 1, 2, 3.

Technically, the identity Rg∗OXn−1,n = OXn is part of the induction
hypothesis too. For n = 1, 2, the morphism g is an isomorphism, and this
identity is trivial. For n = 3, g is everywhere locally an isomorphism, except
over the locus Z consisting of non-curvilinear triple points. But in this
case, we know that both X2,3 and X3 are Cohen-Macaulay, and we can
find a sequence z1, z2, z3 of global functions, regular on both X2,3 and X3

and vanishing on Z. Using this we can verify that Rg∗OX2,3 = OX3 by a
standard local cohomology argument, like the one alluded to earlier in our
discussion of the induction step.
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4.2. THE POLYGRAPH THEOREM ENTERS THE SCENE

Recall from Lecture 1 the definition of the polygraph Z(n, l) ⊆ C2n+2l and
the theorem (whose proof we will discuss later on) that its coordinate ring
is a free C[y]-module, where x, y, a,b are the coordinates on C2n+2l. We
will now show how Lemma 4.1 follows from the polygraph theorem and the
construction of Xn as a blowup. Recall specifically that

Xn = ProjC[x, y][tJ] = Proj
⊕

d

Jd,

where J = C[x, y]A is the ideal generated by the alternating polynomials.
To establish Lemma 4.1 it suffices to prove the following proposition.

PROPOSITION 4.2. The ideal Jd is a free C[y]-module for all d.

Proof. Set l = dn, and let Z(n, l) ⊆ C2n+2l be the polygraph. Recall
that this is the union of the subspaces

Wf = V (ai − xf(i), bi − yf(i) : 1 ≤ i ≤ l),

for all f : {1, . . . , l} → {1, . . . , n}. Let G = Sd
n be the Cartesian product

of d copies of the symmetric group Sn, acting on C2n+2l by permuting the
factors in C2l = (C2)dn in d consecutive blocks of length n. In other words
each w ∈ G fixes the coordinates x, y on C2n, and for each k = 0, . . . , d− 1
permutes the coordinate pairs akn+1, bkn+1 through akn+n, bkn+n among
themselves.

Let R(n, l) = C[x, y,a,b]/I(n, l) be the coordinate ring of Z(n, l). By
Theorem 1.8, R(n, l) is a free C[y]-module. By the symmetry of its defi-
nition, I(n, l) is a G-invariant ideal, so G acts on R(n, l). We claim that
Jd is isomorphic as a C[x, y]-module to the space R(n, l)ε of G-alternating
elements of R(n, l). Each x-degree homogeneous component of R(n, l) is
a finitely generated y-graded free C[y]-module. Since R(n, l)ε is a graded
direct summand of R(n, l), it is a free C[y]-module, so the claim proves the
Proposition.

Define a function f0 by f0(kn + i) = i for all 0 ≤ k < d, 1 ≤ i ≤ n.
Restriction of regular functions from Z(n, l) to its component subspace
Wf0 is given by the C[x, y]-algebra homomorphism ψ : R(n, l) → C[x, y]
mapping akn+i, bkn+i to xi, yi. Observe that ψ maps R(n, l)ε surjectively
onto C[x, y]Ad = Jd. In fact, R(n, l)ε is the C[x, y]-submodule of R(n, l)
generated by products of the form

∆M1(a1, b1, . . . , an, bn) · · ·∆Md
(a(d−1)n+1, b(d−1)n+1, . . . , adn, bdn).
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Let p be an arbitrary element of R(n, l)ε. Since p is G-alternating, p
vanishes on Wf if f(kn + i) = f(kn + j) for some 0 ≤ k < d and some
1 ≤ i < j ≤ n. Thus the regular function defined by p on Z(n, l) is
determined by its restriction to those components Wf such that for each
k, the sequence f(kn + 1), . . . , f(kn + n) is a permutation of {1, . . . , n}.
Moreover, for every such f there is an element w ∈ G carrying Wf onto
Wf0. Hence p is determined by its restriction to Wf0. This shows that p
vanishes on Z(n, l) if ψ(p) = 0, that is, the kernel of ψ:R(n, l)ε → Jd is
zero. Hence ψ is injective as well surjective, so it’s an isomorphism. 2

At this point, everything is left hanging solely on the proof of the poly-
graph theorem. Before we turn to the discussion of that proof, I want to
make a few more remarks on the geometric topics.

The first remark is that the polygraph has a direct geometric relevance to
the Hilbert scheme picture, which is somewhat obscured by its roundabout
entrance via Lemma 4.1 and Proposition 4.2. To see this, consider the
universal family F/Xn = F ×Hn Xn pulled back to Xn, and its l-th fiber
power

F l/Xn = {(I, P1, . . . , Pn, Q1, . . . , Ql) : Qi ∈ V (I) for all i}.
Since σ(I) = JP1, . . . , PnK the condition Qi ∈ V (I) is equivalent to Qi ∈
{P1, . . . , Pn}. It follows immediately that the projection on C2n+2l of F l/Xn

⊆ Hn × C2n+2l is nothing other than the polygraph Z(n, l). In particular,
every regular function on Z(n, l) can be composed with this projection to
yield a global regular function on F l/Xn. The latter is the same thing
as a global section of B⊗l over Xn (abusing notation, we write B for
what is really ρ∗B). So we have a canonical, geometrically defined ring
homomorphism

R(n, l) → H0(Xn, B
⊗l).

Later we will see that this homomorphism is an isomorphism, and what’s
more, the higher cohomology modules H i(Xn, B

⊗l) vanish for i > 0. If we
grant in advance that Xn is Cohen-Macaulay, and observe that the locus
V (y) is a complete intersection in Xn, these facts in turn imply that R(n, l)
is a free C[y]-module. So, conceptually, the right idea is that R(n, l) is free
because Xn is Cohen-Macaulay and the tensor powers of B enjoy a strong
cohomology vanishing theorem on Xn. For now, however, we are obliged to
work backwards and prove that R(n, l) is free by getting our hands dirty.

The second remark concerns the ideal J and its powers. Any alternating
polynomial must obviously vanish at a point of C2n where xi = xj and
yi = yj, for i 6= j. Thus we have obvious inclusions

J ⊆
⋂
i<j

(xi − xj, yi − yj),
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and consequently
Jd ⊆

⋂
i<j

(xi − xj, yi − yj)d.

It is a consequence of Proposition 4.2 that equality holds here:

PROPOSITION 4.3. For all n and d, we have

Jd =
⋂
i<j

(xi − xj, yi − yj)d. (16)

Proof. We first consider the situation locally at a point where the yi are
not all equal. With a little work, it can be shown that (16) reduces at such
a point to the same equation for smaller values of n. Thus we can assume
by induction that (16) holds locally on U = C2n \V (y1−y2, . . . , yn−1−yn).
Since Jd is a free C[y]-module, the ring C[x, y]/Jd has depth at least n−1 as
a C[y]-module. This implies that V (Jd) is scheme-theoretically equal to the
closure of its intersection with any open set of the form C2n \ V (I), where
I is generated by at least two independent linear forms in y. In particular,
for n ≥ 3, V (Jd) is the closure of its intersection with U , establishing (16).
For n = 1, 2, the result is trivial. 2

Proposition 4.3 and Theorem 2.1 justify the assertion that Hn and Xn

are the blowups of SnC2 and C2n, respectively, along the reduced union of
pairwise diagonals. See the remarks following Theorem 2.1. Proposition 4.3
also implies that the ideals Jd are integrally closed, and hence the Reese
algebra T = C[x, y][tJ] is an integrally closed domain. By definition, this
shows that Xn is arithmetically normal in its realization as ProjT . In
particular, Xn is normal, i.e., its local ring at every point is integrally
closed.

We conjecture that Theorem 1.8 holds for the polygraph Z(n, l) ⊆
Ckn+kl over E = Ck for any k, with freeness over the polynomial ring
C[z] in any one set of n coordinates on Ckn. If true, this would imply that
Proposition 4.2 and Proposition 4.3 hold in more than two sets of variables
x, y, . . . , z, with essentially the same proof. At present we cannot prove any
of these results for k > 2, not even the “intuitively obvious” case d = 1
of Proposition 4.3. Indeed we cannot prove these results for k = 2 without
recourse to the polygraph theorem. For k = 1, by contrast, they are easy
and well-known: the ideal J is generated by the Vandermonde determinant
∆(x), and the intersection of ideals in (16) is equal to the their product.
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4.3. THE POLYGRAPH BASIS

Rather than go over the proof of the polygraph theorem as presented in
[17], what I would like to do is reveal the secret behind it. The secret is an
algorithm for producing the elements of a free module basis of R(n, l), in
terms of combinatorial indexing data. The indexing data are pairs

e = (e1, . . . , en) ∈ Nn, f : [l] → [n].

Here and below we use the abbreviation [k] = {1, . . . , k}. Recall that R(n, l)
is a quotient of a polynomial ring

R(n, l) = C[x, y, a,b]/I(n, l),

so our basis elements will be represented by polynomials

p[e, f ] ∈ C[x, y, a,b].

As R(n, l) is doubly graded by degree in the x, a variables (“x-degree”)
and the y,b variables (“y-degree”), our elements p[e, f ] will be doubly
homogeneous. They will also satisfy certain important vanishing conditions.
To describe the conditions, we introduce loci Y (m, r, k) ⊆ Z(n, l) defined
by

Y (m, r, k) =
⋃
V (xT ) ∩Wf : |T ∩ [r] \ f([k])| ≥ m.

Here T is a subset of [n] and V (xT ) is shorthand for V (xj : j ∈ T ). Recall
that Wf is the component of the polygraph Z(n, l) on which ai = xf(i),
bi = yf(i) for all i ∈ [l]. Thus, informally, Y (m, r, k) is the locus on which at
least m of the first r coordinates xj vanish, coordinates in f([k]) excluded.
The ideal of Y (m, r, k) is called I(m, r, k). The basis elements p[e, f ] will
satisfy

− degx p[e, f ] = |e| = e1 + · · ·+ en,
− degy p[e, f ] = i(e, f), defined below,
− p[e, f ] ∈ I(m, r, k) iff |(supp e)c ∩ [r] \ f([k])| < m, and these elements

span I(m, r, k) as a C[y]-module.

Here supp e is the set of indices j with ej 6= 0, and (supp e)c is its com-
plement. The last condition implies that the ideals I(m, r, k) generate a
distributive sublattice of the lattice of ideals inR(n, l), all of whose members
are spanned by subsets of the basis {p[e, f ]}. It follows that the coordinate
ring of any intersection of unions of the loci Y (m, r, k) is again a free
C[y]-module (and also that every such intersection is scheme-theoretically
reduced).

Let’s check that at least in a certain weak sense, the numbers work out.
Any free C[y]-module basis of R(n, l) must also be a C(y)-vector space basis
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of C(y)⊗ R(n, l). In C(y)⊗ R(n, l) we can form for each f the rational
function

1f =
∏

i

∏
j 6=f(i)

bi − yj

yf(i) − yj
,

which is identically 1 on Wf and vanishes on all other components Wg (it
is undefined where Wf and Wg intersect). The set of all elements

xe1f

is a C(y)-basis of C(y)⊗ R(n, l). In this basis, it is not hard to see that
C(y)⊗ I(m, r, k) is spanned by the elements

xe1f : |(supp e)c ∩ [r] \ f([k])| < m.

The reason is that if |T ∩ [r] \ f([k])| ≥ m and e, f are as above, then
(supp e)c cannot contain T , that is, (supp e) ∩ T is non-empty, so xe must
vanish on V (xT ). This shows that in each x-degree, we have specified the
right number of elements p[e, f ] to belong in I(m, r, k).

Before describing the algorithm, I want to introduce a diagram formal-
ism for the indexing data e, f , and define i(e, f). We associate to the pair
e, f an n× l grid with numerical entries. The numbers e1, . . . , en are placed
along the left edge of the grid. In column i, we place a number in row f(i),
choosing these numbers to increase consecutively in each row j, starting
with ej at the left. Here’s an example: let n = 4, l = 6,

e = (0, 5, 1, 3), f = (4, 4, 1, 2, 1, 3).

The associated grid is
3 4 5
1 2
5 6
0 1 2

.

The “inversion number” i(e, f) is now defined to be the number of pairs of
entries in distinct rows and columns (including the left edge as a column)
satisfying either of two conditions:

− the right entry is in a higher row than the left entry, and the two entries
have equal value, or

− the right entry is in a lower row and is equal to the left entry plus one.

In the example there are i(e, f) = 4 such pairs. They are the two 2’s, the
two 5’s, the 1 on the left edge with the lower 2, and the upper 5 with the
6.
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If we define the generating function

An,l(q, t) =
1

(1− q)n

∑
e,f

t|e|qi(e,f),

it follows that the Hilbert series of R(n, l) as a doubly graded algebra is
given by ∑

r,s

trqs dimR(n, l)r,s = An,l(q, t).

In particular we must have An,l(q, t) = An,l(t, q), a fact which is rather
amazing when considered in light of the combinatorial definition. Later we
will see that there is an explicit formula for An,l(q, t) in terms of operators
on Macdonald polynomials.

The quantity i(e, f) can be computed by a combinatorial recurrence.
The key to this is to observe that i(e, f) remains invariant if we “cycle” the
grid by moving the bottom row to the top, and subtracting one from each
entry of that row. Doing this only gives a new legal grid if e1 > 0, but there
are modifications that work when e1 = 0. Altogether there are three cases.
Once and for all we fix the cyclic permutation

θ = (1 2 . . . n).

In terms of θ the result of cycling the grid for e, f is the grid for e′ =
θ−1e− (0, . . . , 0, 1), f ′ = θ−1f .
Case I: e1 = 0 and 1 6∈ f([l]), i.e. the only entry in the bottow row is a
zero at the left edge. The bottom row contributes nothing to i(e, f), so
i(e, f) = i(e′, f ′), where e′ = (θ−1e)|[n−1], f ′ = θ−1f . Note that e′ ∈ Nn−1

and f ′ has image in [n − 1]. The grid of e′, f ′ is gotten by deleting the
bottom row from the grid of e, f .
Case II: e1 = 0 and t = min f−1({1}), i.e. there is a 1 in the bottom row
of the grid, in column t. Then

i(e, f) = i(e′, f ′) +m,

where e′ = θ−1e, f ′ = θ−1f |L, L = [l] \ {t}, and m = |(supp e)c \ f−1([t])|.
In other words, m is the number of rows in the grid with a zero at the left
edge, and no entry in columns 1, . . . , t (in particular, the bottom row does
not count). The grid of e′, f ′ is gotten by deleting column t from the grid of
e, f and cycling without diminishing e1. Note however that any remaining
entries in the bottom row will get diminished as a result of deleting column
t.
Case III: e1 > 0. Then i(e, f) = i(e′, f ′), where e′ = θ−1e − (0, . . . , 0, 1),
f ′ = θ−1f . The grid of e′, f ′ is the result of cycling the grid of e, f ,
diminishing e1 by 1.
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Note that the quantity |e| + n+ l is reduced by 1 at every step, so the
recurrence terminates with the empty grid, defined to have i(e, f) = 0. The
example considered above belongs to Case II, and for this example the grid
of e′, f ′ is

0 1
3 4 5
1 2
5 6

.

Here m = 0, since only the original bottom row had ej = 0, so the value
i(e, f) is equal to that of the new diagram, also 4.

Exercise: Verify that i(e, f) satisfies the recurrence. Cases I and III are
trivial, but Case II is not.

Exercise: Let us define the generating function

An,l
m,r,k(q, t) =

1
(1 − q)n

∑
e,f

t|e|qi(e,f),

summed over pairs e, f with |(supp e)c ∩ [r] \ f([k])| ≥ m. Since I(m, r, k)
is spanned by the elements p[e, f ] for e, f not in the range of summation,
the Hilbert series of the coordinate ring of Y (m, r, k) is given by∑

r,s

trqs dim(R(n, l)/I(m, r, k))r,s = An,l
m,r,k(q, t).

Note that giving the numbers |(supp e)c ∩ [r] \ f([k])| for all r and k is
equivalent to giving the sets Sk(e, f) = (supp e) ∪ f([k]) for all k. Let us
also define generating functions

BS0,...,Sl
n (q, t) =

1
(1 − q)n

∑
e,f

t|e|qi(e,f)

summed over pairs e, f with Sk(e, f) = Sk for all k = 0, 1, . . . , l, so we have

An,l
m,r,k(q, t) =

∑
|[r]\Sk|≥m

BS0,...,Sl
n ,

summed over admissible sequences of sets S, i.e., sequences S0 ⊆ · · · ⊆
Sl ⊆ [n] such that |Sk \ Sk−1| ≤ 1 for all k = 1, . . . , l. Now show that
the recurrence for i(e, f) implies that the generating functions BS0 ,...,Sl

n are
determined by the following recurrence (together with the initial condition
B∅,...,∅

0 = δ0,l). If 1 6∈ Sl, then

BS0,...,Sl
n =

1
1 − q

Bθ−1S0,...,θ−1Sl
n−1 .
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If 1 ∈ St \ St−1, then

BS0 ,...,Sl
n = qn−|St | ∑

S′
0,...,S′

l−1

B
S′

0 ,...,S′
l−1

n ,

summed over admissible S′ such that S ′
i = θ−1Si for i < t and S ′

i ∪ {n} =
θ−1Si+1 for i ≥ t (note that n ∈ θ−1Si+1 for these values of i). If 1 ∈ S0,
then

BS0 ,...,Sl
n = t

∑
S′

0,...,S′
l

B
S′

0,...,S′
l

n ,

where S ′ is admissible and S ′
i ∪ {n} = θ−1Si for all i.

5. Constructing the basis

5.1. BASIS CONSTRUCTION ALGORITHM

Recall from the last lecture that our plan is to give a basis of R(n, l) consist-
ing of doubly homogeneous polynomials p[e, f ] for e ∈ Nn and f : [l] → [n]
such that

− degx p[e, f ] = |e|,
− degy p[e, f ] = i(e, f),
− p[e, f ] ∈ I(m, r, k) ⇔ |(supp e)c ∩ [r] \ f([k])| < m,

where i(e, f) is the number of inversions in the grid diagram of (e, f), as
defined in the last lecture. Also, the elements p[e, f ] we have specified to
belong to I(m, r, k) will actually span this ideal as a C[y]-module.

We now present an algorithm to compute p[e, f ]. In places, the algo-
rithm specifies that we should compute some polynomial as the unique
solution of some linear equations over C[y]. At such points, of course, there
is something to prove. First, the solution should exist and be unique in
linear algebra over the field of rational functions C(y), and second, the
resulting polynomial should belong to C[x, y, a,b] when, a priori, it might
only belong to C(y)[x, a,b]. These things are true, but I will not attempt
to justify them fully here.

You can readily imagine a possible proof of the polygraph theorem along
these lines: (1) present the algorithm, (2) prove that it works. The approach
actually taken in [17] looks quite different. There I inductively construct
bases for the rings R(n, l)/I(1, 1, t) for t going from l to 0, and finally
for R(n, l). The algorithm presented here is what you get by unravelling
the inductive construction presented in Section 4.10 of [17], and the proof
that it works is implicit in the proof of the relevant lemmas there. After
presenting the algorithm, I’ll say a bit below about what is going on in
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the proof of its correctness, and why the less algorithmic approach in [17]
seems to be the only workable method.

In the algorithm to compute basis elements p[e, f ] in R(n, l), we will
assume that they have already been computed in R(n−1, l), in R(n, l−1),
and in smaller x-degrees in R(n, l). The starting point for the recurrence is
the case l = 0. Then we have R(n, 0) = C[x, y], and the required basis is

p[e, ∅] = xe.

This also covers the case n = 0, since R(0, l) = 0 if l > 0.
Given (e, f), we set

t =




0 if e1 > 0
l + 1 if e1 = 0 and 1 6∈ f([l])
min f−1({1}) otherwise.

The value of t is, so to speak, the position of 1 in the bottom row of the
grid, with the convention that a missing 1 is “outside” the grid, on the left
edge if e1 > 1 and on the right edge if e1 = 0. We fix

θ = (1 2 . . . n),

as before.
The algorithm proceeds in two phases. In the first phase, we construct

a proto-basis, whose elements we denote q[e, f ]. In the second phase, we
correct these to get the p[e, f ]. To compute an individual p[e, f ] we would
first have to compute all the proto-basis elements q[e, f ] of the same bi-
degree, so in practice we might as well compute all p[e, f ] of a given bi-degree
at once. The proto-basis construction has three cases. Comparing them with
the three cases in the recurrence for i(e, f), you will see that i(e, f) does
correctly give the y-degree of the constructed elements.
Case I: t = l + 1. In other words, e = (0, e2, . . . , en) and f maps [l] into
[n] \ {1}. Note that (θ−1e)|[n−1] ∈ Nn−1 determines e and that θ−1f maps
[l] into [n− 1]. In this case, set

q[e, f ] = θpn−1,l[(θ−1e)|[n−1], θ
−1f ],

the right-hand side having already been computed in R(n− 1, l).
Case II: 1 ≤ t ≤ l. Define

Z ′(r, t) = V (at) ∩
⋃
f ′
Wf ′ : f ′(t) ∈ [r] \ f ′([t− 1]), (17)

a subspace arrangement contained in R(n, l) as a closed subset. Set L =
[l] \ {t}, and denote by R(n, L) the ring R(n, l − 1) using a,b variables
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ai, bi : i ∈ L, that is, omitting index t. It is a fact that the coordinate ring
O(Z ′(r, t)) is a free C[y]-module with basis consisting of elements

bm−1
t pn,L[e′, f ′] : m ≤ |(supp e′)c ∩ [r] \ f ′([t− 1])|.

Digressing briefly, note that the pn,L[e′, f ′] satisfying the above restriction
for a given m form a basis of R(n, L)/In,L(m, r, t−1). Over a general point
of Yn,L(m, r, t− 1), lying on a component Wf ′ , say, there are m choices of
j ∈ [r]\f ′([t−1]) with xj = 0, and hence of possible yj values for the extra
variable bt on Z ′(r, t) (since at must be zero). In a loose sense, this explains
why each such pn,L[e′, f ′] should be multiplied by the m different powers
b0t through bm−1

t to get a basis of O(Z ′(r, t)).
For our given (e, f), we have n ∈ (supp θ−1e)c \ θ−1f([t− 1]). Hence if

we fix

m = |(supp θ−1e)c ∩ [n− 1] \ θ−1f([t− 1])|
= |(supp θ−1e)c \ θ−1f([t− 1])| − 1
= |(supp e)c \ f−1([t])|,

then the polynomial
bmt pn,L[θ−1e, θ−1f |L]

is one of our basis elements for O(Z ′(n, t)) but not for O(Z ′(n − 1, t)).
Note that this is the same m as in Case II of the recurrence for i(e, f). We
now define a new polynomial q1 by combining the above polynomial with
a linear combination of our basis elements for O(Z ′(n − 1, t)) to make it
vanish on Z ′(n− 1, t). In symbols,

q1 ∈ bmt pn,L[θ−1e, θ−1f |L]

+C[y]
{
bm

′−1
t pn,L[e′, f ′] : m′ ≤ |(supp e′)c ∩ [n− 1] \ f ′([t− 1])|

}
,

q1|Z′(n−1,t) = 0.

The second condition just means that for each component V (at)∩Wf ′ from
the definition of Z ′(n− 1, t) in (17), the result of substituting ai 7→ xf ′(i),
bi 7→ yf ′(i), xf ′(t) 7→ 0 in q1 is zero. Thus the above conditions define q1
in terms of the solution to some linear equations over C[y]. The existence
and uniqueness of the solution is equivalent to the claimed fact that the
specified elements of O(Z ′(n − 1, t)) indeed form a basis, which can be
proven using the polygraph theorem for R(n, l− 1).

We’re not done yet! We now define q[e, f ], uniquely modulo I(1, 1, t−1),
to be a polynomial of the correct bi-degree such that

− q[e, f ] coincides with θq1 on

V (x1) ∩
⋃
f

Wf : f(t) = 1, 1 6∈ f([t− 1]),
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− q[e, f ] ∈ I(1, 1, t), that is, q[e, f ] vanishes on

V (x1) ∩
⋃
f

Wf : f(t) 6= 1, 1 6∈ f([t− 1]).

Note that the union of the two loci above is Y (1, 1, t−1), so the conditions
define q[e, f ] uniquely modulo I(1, 1, t− 1), provided a solution exists at
all. It is a fact that a solution does exist.
Case III: t = 0. We have e1 > 0 and we define

q[e, f ] = x1θp[θ−1(e1 − 1, e2, . . . , en), θ−1f ],

the right-hand side having already been computed as a basis element of
smaller x-degree. In this case, it will turn out that p[e, f ] = q[e, f ].

Now that the proto-basis elements q[e, f ] have been computed, the
algorithm concludes with a correction phase: define p[e, f ] by the conditions

p[e, f ] ∈ q[e, f ] + C[y]
{
q[e′, f ′] : t′ < t and

∃r, k : |(supp e′)c ∩ [r] \ f ′([k])|> |(supp e)c ∩ [r] \ f([k])|
}
,

p[e, f ] ∈ I(m, r, k) for m > |(supp e)c ∩ [r] \ f([k])|.
In the set of correction terms appearing in the first line above, the condition
t′ < t refers to the “t” values defined for (e′, f ′) and (e, f) respectively. Thus
the correction terms are those q[e′, f ′] defined at a stage with a smaller t
value than q[e, f ], and for which there is some I(m, r, k) that is supposed to
contain p[e, f ] but not p[e′, f ′]. Note that the correction terms could as well
have been p[e′, f ′], presumed defined inductively for smaller t values. Thus
the correction serves to force p[e, f ] to vanish on the union of its appropriate
loci Y (m, r, k), by adjusting it with elements that do not vanish there. It
is a fact that this correction is possible, and that the correction terms are
linearly independent on the union

⋃
Y (m, r, k) : m > |(supp e)c∩[r]\f([k])|,

so the correction is unique. As in the construction of q1 in Case II, the
second condition imposes a system of linear equations to be solved for the
coefficients of the correction terms.

5.2. ABOUT THE PROOF

Why is it so hard to prove directly that this algorithm gives well-defined
results? We have a convenient basis of C(y) ⊗ R(n, l), namely, the set of
rational functions

xe1f ∈ C(y)[x, a,b]

defined in the preceding lecture. The algorithm can be conceived of as a
method for computing p[e, f ] as a linear combination of the elements xe1f .
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From this point of view it is actually not so hard to show that it works. The
definition of q[e, f ] in terms of q1 in Case II presents no problem in this
setting, and one can show that the linear equations over C(y) defining
the correction terms in the construction of q1 and later of p[e, f ] have
unique solutions. The problem with this is that it only gives the p[e, f ]
as elements of C(y) ⊗ R(n, l). We have no reason to suppose in advance
that denominators appearing when we solve various linear equations over
C(y) should cancel out.

Geometrically speaking, working over C(y) amounts to working with
generic values of the y coordinates. Generically, the y coordinates are
distinct, and the subpaces Wf effectively do not meet. That is precisely
why we have the C(y)-basis {xe1f}. The simplest non-generic points are
where exactly two of the y coordinates coincide, say yp and yq, and the rest
are distinct from these and each other. At such a point, distinct subspaces
Wf and Wg can meet, but only if f and g are close: we can only have
f(i) 6= g(i) if {f(i), g(i)} = {p, q}. Locally, in a neighborhood of such a
point, Z(n, l) looks like Z(2, L) × C2(n−2), for some set of indices L ⊆ [l].
This suggests a possible proof strategy. The locus V where there is more
than one coincident pair of y variables has codimension 2 in Cn = Spec C[y].
Any rational function h(y) which is locally regular outside V is regular, i.e.,
is a polynomial. To show that the linear algebra over C(y) in the algorithm
gives results in C[y], it is enough to show that the algorithm works locally
outside V , and we can hope to reduce the problem there to the case n = 2.

This basic strategy works. Its chief trouble is that it is extremely awk-
ward to formulate the geometric reduction to n = 2 directly in terms of
the algorithm. This is the main reason why I do not follow an algorith-
mic approach in [17]. There is a second, more subtle, source of trouble to
overcome in the proof, which surfaces in the algorithm in the form of a non-
canonical choice. Recall that in Case II, after constructing q1, we defined
q[e, f ] by giving its value on Y (1, 1, t−1). The actual polynomial we choose
to represent it is arbitrary, modulo I(1, 1, t− 1). Part of this arbitrariness
is illusory, since different choices might correct to the same p[e, f ] in the
last phase. But a difference that is not only in I(1, 1, t− 1), but also in
every I(m, r, k) that contains p[e, f ], will persist as a difference in the final
p[e, f ]. In short, the conditions we imposed on the p[e, f ] do not define them
uniquely.

To make the basis canonical, we can insist in Case II on realizing q[e, f ]
as a C[y]-linear combination of basis elements for R(n, l)/I(1, 1, t−1) found
by other means (we must resort to other means because we don’t yet have
the basis of R(n, l)/I(1, 1, t−1) during the proto-basis construction phase).
Such elements can be obtained by reverse induction on t using two further
facts.
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− The elements q[e, f ] = θpn−1,l[(θ−1e)|[n−1], θ
−1f ] constructed in Case

I form a free C[y]-module basis of R(n, l)/I(1, 1, l).
− Given a free C[y]-module basis Bt of R(n, l)/I(1, 1, t), a free module

basis of R(n, l)/I(1, 1, t− 1) is given by atBt ∪ { bmt pn,L[e, f ] : m <
|(supp e)c| and pn,L[e, f ] 6∈ In,L(1, 1, t− 1) }, where L = [l] \ {t}.

It is also true that if B0 is a basis of R(n, l)/I(1, 1, 0) then B0 ·{1, x1, x
2
1, . . .}

is a basis of R(n, l). These facts provide a much simpler construction of
a basis of R(n, l) using inductively the bases {p[e, f ]} of R(n − 1, l) and
R(n, l− 1). We can’t deduce the polygraph theorem from this alone, how-
ever, because the simpler basis lacks compatibility with the ideals I(m, r, k),
and we need that to make the induction go through.

Exercise: For n = 2, l = 1, e = (0, 1), f(1) = 1, use the algorithm to com-
pute the polynomial p[e, f ], of bi-degree (1, 0).When constructing q1 in Case
II, canonicalize by expressing it in terms of the basis of R(n, l)/I(1, 1, 0)
described above. Your final answer should be x1 + x2 − a1, and you should
have found {a1, x2} for the canonicalizing basis ofR(n, l)/I(1, 1, 0) in degree
(1, 0). Note that Y (1, 2, 1) is the locus defined by the vanishing of whichever
coordinate xj is not assigned equal to a1, and that p[e, f ] = x1 + x2 − a1

vanishes on this locus, as it should.

6. Macdonald polynomials and character formulas

6.1. MACDONALD POLYNOMIALS

In the preceding lectures we’ve had a fairly thorough look at the ingredients
of the proof of the n! theorem, Theorem 1.1, but have so far said nothing
about Theorem 1.2, which identifies the doubly-graded character of the
space Dµ of derivatives of ∆µ as a Macdonald polynomial. We haven’t even
defined the Macdonald polynomials, so let’s do that now.

We first need the notion of plethystic substitution from the theory of
symmetric functions. We work with the algebra of symmetric polynomials

Λ = ΛQ(q,t)(z1, z2, . . .)

in indeterminates zi, with coefficients in the field of rational functions of
two parameters Q(q, t). In infinitely many indeterminates, the term “sym-
metric polynomial” is something of a misnomer, since every non-constant
symmetric polynomial has infinitely many terms. Strictly speaking, Λ is the
algebra of symmetric formal power series with terms of bounded degree. The
algebra Λ can be identified with the polynomial ring

Λ = Q(q, t)[p1, p2, . . .]



MACDONALD POLYNOMIALS AND HILBERT SCHEMES 45

in the power-sums
pk(z) =

∑
i

zk
i .

For any A ∈ Λ, we define

pk[A] = A|q 7→qk,t→tk,zi 7→zk
i

to be the result of replacing every indeterminate in A by its k-th power.
Since the power-sums freely generate Λ, there is a unique endomorphism
of Q(q, t)-algebras

evA : Λ → Λ; evA(pk) = pk[A].

We define for every f ∈ Λ the plethystic substitution

f [A] = evA(f).

We also set Z = p1 = z1 + z2 + · · ·, and we see immediately that pk[Z] =
pk(z), hence

f [Z] = f(z)

for all f ∈ Λ. More generally, if A = a1 + a2 + · · · is any sum of monomi-
als, each with coefficient 1, then pk[A] = pk(a1, a2, . . .) and hence f [A] =
f(a1, a2, . . .) for all f . The only plethystic substitutions we need here are

f 7→ f [Z/(1− q)], f 7→ f [Z/(1− t)],

and their inverses

f 7→ f [Z(1− q)], f 7→ f [Z(1 − t)].

If we identify Q(q, t) with a subfield of the formal Laurent series in q, t, we
can conveniently interpret f [Z/(1− q)] as

f [Z(1 + q + q2 + · · ·)] = f(z1, z2, . . . , qz1, qz2, . . . , q2z1, q2z2, . . .).

THEOREM/DEFINITION 6.1. There is a homogeneous Q(q, t)-basis {H̃µ(z)}
of Λ whose elements are uniquely characterized by the conditions

(1) H̃µ[Z(1− q)] ∈ Q(q, t){sλ : λ ≥ µ},
(2) H̃µ[Z(1− t)] ∈ Q(q, t){sλ : λ ≥ µ′}, and
(3) H̃µ[1] = 1.

Here µ is an integer partition, and λ ranges over partitions of the same
integer |λ| = |µ|, with ≤ denoting the dominance partial ordering on parti-
tions.
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The above theorem is a recasting of Macdonald’s existence theorem. The
H̃µ are related to the integral form Macdonald polynomials Jµ, as defined
in Macdonald’s book [24] , by

H̃µ(z) = tn(µ)Jµ

[
Z

1− t−1
; q, t−1

]
.

Equivalently, if we define coefficients K̃λµ(q, t) ∈ Q(q, t) through the Schur
function expansion

H̃µ(z) =
∑
λ

K̃λµsλ(z),

then these are related to Macdonald’s q, t-Kostka coefficients Kλµ(q, t) by

K̃λµ(q, t) = tn(µ)Kλµ(q, t−1).

Note that since n(µ) is the x-degree of ∆µ, Theorem 1.2 shows that K̃λµ(q, t)
not only is a polynomial with coefficients in N, but that its degree in t is
n(µ). It follows that Kλµ(q, t) is also a polynomial with coefficients in N,
which was Macdonald’s original conjecture.

Theorem 6.1 is deduced from Macdonald’s existence theorem in [24]
as follows. Condition (2) is the triangularity condition for Macdonald’s
Jµ. Condition (1) follows from the symmetry H̃µ′(z; q, t) = H̃µ(z; t, q), or
K̃λ,µ′(q, t) = K̃λ,µ(t, q), a consequence of the symmetries (8.14–15) in Mac-
donald’s book. Condition (3) says K̃(n),µ = 1, which follows from formula
(6.11′) in Macdonald’s book with n→ ∞ in his formula. This shows that the
basis {H̃µ(z)} exists. It is unique because conditions (1) and (2) imply that
any alternative basis must be both upper- and lower-triangular with respect
to {H̃µ(z)} in the dominance ordering. Hence any alternative would consist
of scalar multiples of the H̃µ(z), and condition (3) fixes the scalar factor. We
remark that the orthogonality property in Macdonald’s original definition
can be recovered from conditions (1) and (2) and the orthogonality of Schur
functions with respect to the usual Hall inner product.

6.2. EXAMPLE

We compute H̃µ(z) for all |µ| = 3. First, we find the plethystically trans-
formed Schur functions

s3[Z/(1− q)] = 1
(1−q)(1−q2)(1−q3)

[
s3(z) + (q + q2)s21(z) + q3s111

]
,

s21[Z/(1− q)] = 1
(1−q)(1−q2)(1−q3)

· [(q + q2)s3(z) + (1 + q + q2 + q3)s21(z)

+(q + q2)s111(z)
]
.
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By condition (1) in the definition, H̃3(z) is a scalar multiple of s3[Z/(1−q)].
Condition (3) determines the scalar:

H̃3(z) = s3(z) + (q + q2)s21(z) + q3s111.

By symmetry we also have

H̃111(z) = s3(z) + (t+ t2)s21(z) + t3s111.

By condition (1), H̃21(z) is a linear combination of s21[Z/(1 − q)] and
s3[Z/(1 − q)]. Note that s21[Z/(1− q)] − (q + q2)s3[Z/(1− q)] is a scalar
multiple of s3(z) + qs21(z), while s21[Z/(1− q)]− (q−1 + q−2)s3[Z/(1− q)]
is a scalar multiple of s21(z) + qs111(z). Therefore

H̃21(z) = s3(z) + (q + t)s21(z) + qts111(z)

satisfies condition (1), and hence also condition (2), by symmetry. Clearly
it also satisfies condition (3).

Let’s compare this with Theorem 1.2 for µ = (21). The polynomial

∆21(x, y) = x1y2 − x1y3 + x2y3 − x2y1 + x3y1 − x3y2

has degree (1, 1) and is Sn-alternating, so the space of derivatives D21 has
the sign character χ111 in degree (1, 1). This accounts for the term qts111(z)
in H̃21(z). Differentiating by the y variables gives the linear span of x1−x2,
x2 − x3 in degree (1, 0), with character χ21. Similarly y1 − y2, y2 − y3 span
degree (0, 1) with the same character. These two degrees account for the
term (q + t)s21(z). Finally, the constants in degree (0, 0) have the trivial
character χ3, accounting for the term s3(z).

6.3. FROBENIUS SERIES

To prove Theorem 1.2 using our geometric results, the first step is to recast
the theorem in more direct symmetric function terms by introducing the
Frobenius characteristic. This is the map

Φ: (Sn characters) → Λ(n),

where Λ(n) denotes the space of symmetric polynomials homogeneous of
degree n, given by

Φχ =
1
n!

∑
w∈Sn

χ(w)pτ (w)(z).

Here τ(w) is the partition of n whose parts are the cycle-lengths in the
expression for w as a product of disjoint cycles. By a theorem of Frobenius,
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the irreducible characters χλ of the symmetric groups are given in terms of
symmetric functions by the identity

Φχλ = sλ(z).

Using this, we can reformulate Theorem 1.2 as an identity

FDµ(z; q, t) =
def

∑
r,s

trqsΦch(Dµ)r,s = H̃µ(z). (18)

We call the expression FDµ(z; q, t) the Frobenius series of the doubly-graded
Sn-module Dµ.

NowDµ is isomorphic as a doubly-graded Sn module toRµ = C[x, y]/Jµ,
and by Theorem 3.4, the latter is the coordinate ring of the scheme-theoretic
fiber of Xn over the distinguished point Iµ ∈ Hn. Equivalently, Rµ is the
fiber of the vector bundle P on Hn at Iµ. We will prove that FRµ(z; q, t)
satisfies the conditions (1)–(3) characterizing H̃µ(z) in Theorem 6.1. To
do this, we extend the notion of Frobenius series to a broader geometric
context. A fuller discussion is given in [16].

The algebraic torus
T2 = (C∗)2

acts on C2 as the group of 2 × 2 invertible diagonal matrices. This action
extends equivariantly to all geometric objects under consideration: in par-
ticular, to the schemes Hn and Xn, the universal family F , the polygraph
Z(n, l), the vector bundles B and P . The monomial ideals Iµ ∈ Hn are
precisely the T2-fixed points of Hn. Wherever we have encountered doubly
graded algebraic objects, the double grading can be identified with the T2

action, in the sense that an element p is doubly homogeneous of degree
(r, s) if and only if p is a simultaneous eigenvector for the T2 action, with
(t, q) ∈ T2 acting by

(t, q) · p = trqsp.

For example, an ideal I ⊆ C[x, y] is T2-invariant if and only if it is doubly
homogeneous—and hence a monomial ideal. For another example, the dou-
ble grading of Rµ reflects the T2 action on the fiber of the T2-equivariant
vector bundle P over the T2-fixed point Iµ. From this point of view, the
Frobenius series of a doubly-graded Sn-module should be regarded as a
formal expression for its character as a T2 × Sn-module.

Consider the local ring of the Hilbert scheme at a T2-fixed point,

S = OHn,Iµ ,

with maximal ideal M . The local ring (S,M) is regular, and has a T2

action. Since Iµ is an isolated fixed point, the induced action of T2 on the
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cotangent space M/M2 has no non-trivial invariant vectors. Therefore the
rational function detM/M2(1−τ) of τ = (t, q) ∈ T2 is non-zero. We can make
this considerably more precise. For every n-element subset L ⊆ N × N, we
have seen that

∆L/∆µ

represents a regular function on Hn in a neighborhood of Iµ. Provided L
is not equal to the diagram of µ, this function vanishes at Iµ, that is, it
belongs to the maximal ideal M of S. In [15] we gave an alternate proof of
Fogarty’s theorem by exhibiting a specific system of regular local param-
eters (spanning set of M/M2) consisting of 2n of the the above elements,
selected as follows. Choose a cell x in the diagram of µ, and locate the cells
just inside and outside the ends of the hook based at x, as indicated in the
example below.

•
• ◦w

• •z •
• • •
• • • • •
• •x• • •u◦v

• • • • • •
• • • • • •

Here the solid dots represent cells in the diagram of µ, while the open dots
are just outside. This choice contributes the two elements

∆d(µ)∪{v}\{z}/∆µ, ∆d(µ)∪{w}\{u}/∆µ

to the regular system of parameters. Their respective degrees are

(−l, 1 + a), (1 + l,−a),

where a and l are the lengths of the arm and leg in the hook of x (not
counting x itself). These parameters form a basis of T2-eigenvectors in
M/M2. Hence we have explicitly

detM/M2(1− τt,q) =
∏
x∈µ

(1 − t−l(x)q1+a(x))(1 − t1+l(x)q−a∗x)). (19)

This formula was first obtained by Ellingsrud and Strömme [5], in a some-
what different equivalent form.

For any T2-equivariant finitely generated S-module T , the modules
TorS

i (S/M, T ) are finite-dimensional doubly graded vector spaces. If T also
has an action of Sn by S-module automorphisms, then these Tor-modules
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are Sn modules as well, and so have Frobenius series, with coefficients that
are Laurent polynomials in q and t. We now define

FT (z; q, t) =

∑
i(−1)iFTorS

i (S/M,T )(z; q, t)

detM/M2(1− τt,q)
.

The sum is finite, since S is regular and therefore T has a finite free reso-
lution. The long exact sequence for Tor shows that FT is additive on exact
sequences:

FT = FT ′ + FT ′′ for 0 → T ′ → T → T ′′ → 0.

Using the Koszul resolution of S/M , one sees that for T = V λ, an irre-
ducible character of Sn, with T2 acting by some character (t, q) · v = trqsv,
and trivial S-module structure V λ = (S/M)⊗CV

λ, our new definition of FT

yields trqssλ(z), in agreement with the Frobenius series as defined before.
By additivity, it follows that our generalized Frobenius “series” coincides
with the original whenever T has finite length, i.e., is finite-dimensional
over C.

6.4. THE DOUBLY-GRADED CHARACTER OF Dµ

The key result we need for Theorem 1.2 is as follows.

THEOREM 6.2. Let T be a finite S-algebra with an equivariant T2-action
and an Sn-action commuting with the T2-action. Suppose that y1, . . . , yn ∈
T are doubly homogeneous of degree (r, s) and form a regular sequence in
T , and that Sn acts by permuting them. Then we have

FT/(y)T (z; q, t) = FT [Z(1− trqs); q, t].

This theorem is proved using the Koszul resolution of T/(y)T as a
T -module, together with the following property of the Frobenius character-
istic: if Ek denotes the k-th exterior power of the natural representation of
Sn, and V is any representation, then

∑
k

(−u)kΦch(Ek ⊗ V ) = f [Z(1 − u)], where f(z) = Φch(V ).

Now let’s see how to prove that FRµ(z; q, t) = H̃µ(z). We take S =
OHn,Iµ as before and T = OXn,Qµ , where Qµ ∈ Xn is the unique point
lying above Iµ. By Theorem 3.4 we know that T is a free S-module, with
basis any C-basis of Rµ = T/MT . In particular, we can choose such a basis
to be doubly homogeneous and span an Sn-invariant space of polynomials.
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Thus we have an equivariant isomorphism of S-modules T ∼= Rµ ⊗C S. It
follows that

FT (z; q, t) =
FRµ(z; q, t)

detM/M2(1− τt,q)
.

We also know that y = y1, . . . , yn is a regular sequence in T , as a conse-
quence of Lemma 4.1. Theorem 6.2 yields

FT/(y)T (z; q, t) = FT [Z(1− q); q, t].

Combining the above two equations, we obtain condition (1) in Theorem 6.1
for FRµ(z; q, t), provided that

FT/(y)T (z; q, t) ∈ Q(q, t){sλ(z) : λ ≥ µ}.

For this it suffices to show that there exists a T2 × Sn-invariant subspace
Vµ ⊆ T/(y)T , which generates T/(y)T as an S-module, such that only the
characters χλ : λ ≥ µ occur with non-zero multiplicity in ch(Vµ). A suitable
space Vµ is Rµ/(y)Rµ. Since Rµ generates T , Rµ/(y)Rµ generates T/(y)T
as an S-module. Since we killed off the y variables, Rµ/(y)Rµ is a quotient
of the polynomial ring C[x]. It is isomorphic as a (singly) graded Sn-module
to the y-degree zero component (Dµ)−,0 of Dµ. The latter space is the
Macaulay inverse system generated by the Garnir polynomials, the deriva-
tives of ∆µ by maximal degree monomials in y. The Garnir polynomials
are the product of Vandermonde determinants

∆(x1, . . . , xµ′
1
)∆(xµ′

1+1, . . . , xµ′
1+µ′

2
) · · ·∆(xn−µ′

l+1,...,xn
)

and its conjugates by the Sn-action permuting the variables. They span
the unique copy of the irreducible representation V µ of minimal degree,
namely n(µ), in the polynomial ring C[x]. The Macaulay inverse system
they generate was studied by Garsia, Procesi and N. Bergeron [2, 11],
who showed by elementary means that its graded character is given by
the classical t-Kostka coefficients∑

r

tr〈χλ, ch(Dµ)r,0〉 = tn(µ)Kλµ(t−1) = K̃λµ(0, t).

This result is what I alluded to in Lecture 1 as the starting point for my
work with Garsia on the n! conjecture. It yields the simplest known proof
of the positivity theorem for the classical coefficients Kλµ(t). Since it is
known that Kλµ(t) = 0 unless λ ≥ µ, we have established condition (1) for
FRµ(z; q, t). Condition (2) follows by symmetry. Condition (3) just says that
the unique invariants in Rµ are the constants, which is clear. Theorem 1.2
follows.
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6.5. MORE CHARACTER FORMULAS

Let A be any T2-equivariant coherent sheaf of OHn-modules. Since the
Chow morphism Hn → SnC2 is projective, the cohomology modules

H i(Hn, A)

are finitely generated doubly-graded modules over O(SnC2) = C[x, y]Sn.
Their Hilbert series

Hi
A(q, t) =

def
HHi(Hn,A)(q, t)

are formal Laurent series which are rational functions of q and t. If A has
an Sn-action we can similarly define Frobenius series

F i
A(z; q, t) =

def
FHi(Hn,A)(z; q, t) ∈ Λ.

The cohomology Euler characteristic of A is given by the Atiyah–Bott
formula ∑

i

(−1)iHi
A(q, t) =

∑
µ

∑
i(−1)iHTori(kµ,A)(q, t)
detT ∗Hn(Iµ)(1 − τt,q)

.

Here kµ = S/M is the residue field of S = OHµ,Iµ , regarded as a “skyscraper
sheaf” supported at the point Iµ, and T ∗Hn denotes the cotangent bundle,
so T ∗Hn(Iµ) = M/M2, where M is the maximal ideal of S. If A has an
Sn-action, then we can apply the Atiyah–Bott formula to each isotypic
component of A separately, obtaining

∑
i

(−1)iF i
A(q, t) =

∑
µ

∑
i(−1)iFTori(kµ,A)(q, t)
detT ∗Hn(Iµ)(1− τt,q)

.

Note that the term on the right for any particular µ is nothing other than
our definition of FAIµ

(z; q, t) for the stalkAIµ as a module over the local ring
S. Our context differs from the original setting for the Atiyah–Bott formula
in that Hn is not projective. However, there are more general versions of
the formula which apply in our situation [27].

When A is suitably explicit, the right-hand side of the Atiyah–Bott
formula can be written out in full. We already know the denominator,
which is given by (19). If A is locally free, that is, if A is a vector bundle,
then the only non-zero term in the numerator is the Hilbert or Frobenius
series of the fiber A(Iµ). For example, we have seen in Lecture 4 that there
is a natural homomorphism

R(n, l) → H0(Xn, B
⊗l) = H0(Hn, P ⊗B⊗l).
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The second equality here results from the definition P = ρ∗OXn . We
remarked earlier and will soon show that this homomorphism is an isomor-
phism and that the higher cohomology modules H i(Hn, P⊗B⊗l) vanish for
i > 0. Taking A = P ⊗ B⊗l, the left-hand side of the Atiyah–Bott formula
thus reduces to the Frobenius series FR(n,l)(z; q, t), where Sn acts on R(n, l)
through the variables x, y. For the right-hand side, we have

FP (Iµ)(z; q, t) = FRµ(z; q, t) = H̃µ(z),

and we have

HB(Iµ)(q, t) = HC[x,y]/Iµ
(q, t) = Bµ(q, t) =

def

∑
(r,s)∈µ

trqs.

Therefore we obtain the explicit formula

FR(n,l)(z; q, t) =
∑
µ

Bµ(q, t)lH̃µ(z)∏
x∈µ(1− t−l(x)q1+a(x))(1− t1+l(x)q−a(x))

.

To simplify this, we introduce the linear operator

∆ : Λ → Λ; ∆H̃µ(z) =
def

Bµ(q, t)H̃µ(z).

We also observe that for l = 0 we have R(n, 0) = C[x, y], and the Frobenius
series of this is given in plethystic notation by

FC[x,y](z; q, t) = hn

[
Z

(1− q)(1− t)

]
,

where hn(z) = s(n)(z) is the complete homogeneous symmetric function.
Hence we obtain

FR(n,l)(z; q, t) = ∆lhn

[
Z

(1− q)(1− t)

]
.

We can specialize any Frobenius series F to the corresponding Hilbert series
by specializing the Schur function sλ(z) to fλ = χλ(1) = dimV λ, the
number of standard Young tableaux of shape λ. By the formula for the
Frobenius characteristic, the result is equal to n! times the coefficient of
pn
1 in the power-sum expansion of F , or to ∂pn

1F , if we regard F as a
polynomial in the power-sums. This gives a second formula for the Hilbert
series of R(n, l), which we had earlier determined combinatorially:

HR(n,l)(q, t) = An,l(q, t) =
1

(1 − q)n

∑
e,f

t|e|qi(e,f)

= ∂pn
1∆lhn

[
Z

(1− q)(1− t)

]
.
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Note that the last equation is between a purely combinatorial quantity and
a quantity computed using only symmetric function theory. I leave it as a
challenge to you to try to prove it by elementary means!

7. The diagonal harmonics character formula

7.1. MORE CHARACTER FORMULAS

In the last lecture, we saw how to use the Atiyah–Bott theorem to write
down a formula for the Frobenius series ofR(n, l). For this we had to assume
that the natural map

R(n, l) → H0(Hn, P ⊗ B⊗l) (20)

is an isomorphism and that the higher sheaf cohomology groupsH i(Hn, P⊗
B⊗l), i > 0, vanish. We’ll discuss how to justify this assumption at the
end of the lecture. First we’ll investigate how to get various other, related
formulas.

The Frobenius series FR(n,l) contains information aboutR(n, l) as a dou-
bly graded Sn-module. But R(n, l) is actually a doubly graded (Sn × Sl)-
module, and we might ask to describe it as such. Under the identification in
(20), the Sn action comes from P and the Sl action comes from permuta-
tions of the factors in B⊗l . The decomposition into Sl-isotypic components
is given by Schur-Weyl duality as

B⊗l =
⊕

ν

Sν(B) ⊗ V ν ,

where ν ranges over partitions of l, V ν denotes an irreducible Sl-module,
and Sν is the corresponding Schur functor. The Schur functor is charac-
terized by the fact that the representation of GL(W ) on Sν(W ) is the
irreducible representation with character given by the Schur function sν(z).
More precisely, if τ : W → W is a diagonalizable endomorphism with
eigenvalues z1, . . . , zk, then the induced action of τ on Sν(W ) has trace
equal to sν(z1, . . . , zk). It follows that

HomSl
(V ν, R(n, l)) ∼= H0(Hn, P ⊗ Sν(B)),

and that the higher cohomologies vanish. The doubly graded Hilbert series
of Sν(B(Iµ)), or equivalently, the trace of τt,q ∈ T2 on Sν(B(Iµ)), is equal to
the Schur function sν evaluated on the eigenvalues of τt,q on B(Iµ). The sum
of these eigenvalues is the generating function for the cells in the diagram
of µ, which we previously denoted by

Bµ(q, t) =
∑

(r,s)∈µ

trqs.
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It is convenient to express the Schur function of the eigenvalues in plethystic
notation as

HSν (B(Iµ))(q, t) = Sν [Bµ(q, t)].

Setting
R(n, l)ν = HomSl

(V ν, R(n, l)),

its Frobenius series is now given by the Atiyah–Bott formula as

FR(n,l)ν (z; q, t) =
∑
µ

Sν[Bµ(q, t)]H̃µ(z)∏
x∈µ(1 − t−l(x)q1+a(x))(1− t1+l(x)q−a(x))

.

Again we can simplify this by introducing the operator

∇ν : Λ → Λ, ∇νH̃µ(z) = Sν [Bµ(q, t)]H̃µ(z).

In this notation, the operator ∆ introduced earlier is ∇(1). Note that prod-
ucts of the operators ∇ν are positive integral linear combinations of these
operators, since products of Schur functions have the same property. In
particular,

∆l = ∇l
(1) =

∑
|ν|=l

fν∇ν ,

where fν = χν(1) is the number of standard Young tableaux of shape ν.
Taking account of the Sl action, our earlier identity FR(n,l) = ∆lhn[Z/(1−
q)(1− t)] is refined to the system of identities

FR(n,l)ν(z; q, t) = ∇νhn

[
Z

(1− q)(1− t)

]
.

For every ν, the expression above is “q, t-Schur positive,” that is, it is
a linear combination of Schur functions by power series in q and t with
non-negative integer coefficients. Our present knowledge of R(n, l) is not
adequate to provide a combinatorial interpretation of the above expressions,
or even of FR(n,l). What we lack is a basis of R(n, l) compatible with the
Sn and Sl actions.

7.2. THE ZERO-FIBER IN THE HILBERT SCHEME

Let
Zn = σ−1({0}) ⊆ Hn

denote the fiber of the Chow morphism σ:Hn → SnC2 over the origin
0 ∈ SnC2. Here we mean the set-theoretic zero-fiber, as a reduced sub-
scheme of Hn. In fact there is no ambiguity, since it was shown in [15]
that the scheme-theoretic zero-fiber is reduced. Our next step is to work
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out character formulas for the vector bundles P ⊗ B⊗l restricted to the
zero-fiber. As before, we will explicitly identify the spaces of global sections

H0(Zn, P ⊗ B⊗l),

show that the higher cohomologies vanish, and use the Atiyah–Bott formula
to express the Frobenius series. I’ll do this in outline, referring you to [18]
for the details.

The key observation is that OZn has an explicit T2-equivariant resolu-
tion by locally free sheaves of OHn -modules. To write it down we need a
bit of notation. Let Ct and Cq denote the 1-dimensional representations of
T2 on which τt,q ∈ T2 acts by t and q, respectively. We write

Ot = OHn ⊗ Ct, Oq = OHn ⊗ Cq

for OHn with its natural T2 action twisted by these 1-dimensional charac-
ters. You can think of them as copies of O with degree shifts of (1, 0) and
(0, 1), respectively. There is a trace homomorphism of OHn-modules

tr :B → O
defined as follows. Let α ∈ B(U) be a section of B on some open set U .
Since B is a sheaf of algebras and also a vector bundle, there is a regular
function tr (α) ∈ O(U) whose value at I is the trace of multiplication by α
on the fiber B(I). Explicitly,B is a quotient of the trivial bundle C[x, y]⊗O,
and we have

tr (xrys) = pr,s(x, y). (21)

Note that every Sn-invariant polynomial in x, y defines a global regular
function on SnC2, and hence onHn, via the Chow morphism. The validity of
(21) is easily seen by considering the dense open set of points I ∈ Hn where
σ(I) is a set of n distinct points {(x1, y1), . . . , (xn, yn)}. From equation (21),
we see that

1
n

tr :B → O
is left inverse to the canonical inclusion

O ↪→ B,

so we have a direct-sum decomposition of OHn-module sheaves, or of vector
bundles,

B = O ⊕B′, where B′ = ker(tr ).

THEOREM 7.1. There is a canonical T2-equivariant resolution

· · · → B⊗∧k(B′⊕Ot⊕Oq) → · · · → B⊗ (B′⊕Ot⊕Oq) → B → OZn → 0.
(22)
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Proof. (sketch) The projection π:F → Hn of the universal family on Hn

is set-theoretically one-to-one over Zn, so induces a bijective morphism of
the reduced preimage Z̃n = π−1(Zn) onto Zn. This morphism corresponds
to a homomorphism OZn → OZ̃n

. Since B = π∗OF is generated over OHn

by x and y, which vanish identically on Z̃n, the homomorphisms OHn →
OZn → OZ̃n

and therefore OZn → OZ̃n
are surjective. This shows that

Z̃n → Zn is a closed embedding and hence an isomorphism. The inclusion
Z̃n ⊆ F corresponds to a surjective homomorphism B → OZ̃n

∼= OZn . This
gives the final map in the resolution (22).

The kernel of this map is an ideal in B containing the sections x and y.
Multiplication by x and y respectively gives maps B⊗Ot → B, B⊗Oq → B
with image in the kernel of B → OZn . The subbundle B′ = ker(tr ) ⊆ B is
generated by the sections

xrys − 1
n
pr,s(x, y),

and these also belong to the kernel of B → OZn . For r+ s > 0 this is clear,
since x, y, and pr,s(x, y) all vanish on Zn. For r = s = 0 the displayed
expression is identically zero. Multiplication therefore gives a map B ⊗
B′ → B with image in the kernel of B → OZn . Combining these gives the
second-to-last map in (22).

Now F is flat and finite over the non-singular variety Hn, and hence
Cohen-Macaulay. By an old theorem of Briançon, the zero fiber Zn is
irreducible of dimension n− 1, or codimension n+ 1 in F . Note that n+ 1
is also the rank of the vector bundle B′ ⊕Ot ⊕Oq, so that the image of the
map

B ⊗ (B′ ⊕Ot ⊕Oq) → B

is a sheaf of ideals locally generated by n + 1 elements. One shows as in
[15] that this sheaf of ideals defines Zn set-theoretically, and generically also
scheme-theoretically. Then it is the ideal sheaf of a generically reduced local
complete intersection in F , which is therefore reduced and equal to Zn. The
whole sequence in (22) is now exact, since it is the Koszul resolution of Zn

as a local complete intersection in F . As a corollary we can also deduce, as
remarked above, that the scheme theoretic zero-fiber is reduced. 2

The higher cohomology vanishing H i(Hn, P⊗B⊗l) = 0 for i > 0 implies
a similar vanishing for the tensor product of every term in (22) with P or
with P ⊗ B⊗l. This immediately implies that

H i(Zn, P ⊗B⊗l) = H i(Hn,OZn ⊗ P ⊗ B⊗l) = 0 for i > 0

and also that

R(n, l+ 1) ∼= H0(Hn, B ⊗ P ⊗B⊗l) → H0(Zn, P ⊗B⊗l)
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is surjective. It also determines the kernel of this surjection as the image of
the map induced by

B ⊗ (B′ ⊕Ot ⊕Oq) → B,

tensored with P ⊗B⊗l. Knowing the maps in question, we can deduce the
following result essentially by direct calculation.

PROPOSITION 7.2. Assuming the identity H0(Hn, P ⊗ B⊗l) = R(n, l)
and the vanishing of higher cohomology for these sheaves, we have

H0(Zn, P ⊗B⊗l) ∼= R(n, l)/M,

H i(Zn, P ⊗B⊗l) = 0 for i > 0,

where M = R(n, l)m is the ideal generated by the homogeneous maximal
ideal m = C[x, y]Sn

+ in the subring C[x, y]Sn ⊆ R(n, l).

Note that the elements of m represent global functions onHn that vanish
on Zn, so the ideal M is necessarily contained in the kernel of the canonical
map R(n, l) → H0(Zn, P ⊗B⊗l) given by restriction of sections from Hn to
Zn. The content of the proposition is that this canonical map is surjective
and its kernel is exactly M . The resolution (22) can be combined with the
Atiyah–Bott formula for each of its terms to get the character formula for
R(n, l)/M , as follows.

FR(n,l)/M(z; q, t) =
∑
|µ|=n

(1− q)(1− t)Πµ(q, t)Bµ(q, t)l+1H̃µ(z)∏
x∈µ(1− t−l(x)q1+a(x))(1− t1+l(x)q−a(x))

, (23)

where
Πµ(q, t) =

∏
(r,s)∈µ\{(0,0)}

(1− trqs) = en−1[Bµ − 1].

This is particularly interesting in the case l = 0, where R(n, l)/M =
C[x, y]/M , and M = (C[x, y]Sn

+ ), so R(n, l)/M is the ring of coinvariants
for the diagonal action of Sn on C2n. Its Frobenius series is equal to that of
the diagonal harmonics DHn, so we have shown that FDHn(z; q, t) is given
by formula (23) with l = 0. In [10], Garsia and I showed that this reduces
to

FDHn(z; q, t) = ∇en,
where ∇ is the operator given in each degree n by ∇(1n) in our previous
notation, or simply

∇H̃µ(z) = tn(µ)qn(µ′)H̃µ.

This result follows from the expansion of en in terms of Macdonald poly-
nomials, which can be calculated using the Cauchy formula for Macdonald
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polynomials and other facts from the theory of symmetric functions. Using
the known specializations of H̃µ(z; q, t) for q = 1 and for q = t−1, we were
also able to calculate explicitly

FDHn(z; 1, t) and FDHn(z; q, q−1),

thereby establishing a whole series of combinatorial conjectures by ourselves
and others (recounted in [14]), relating the character of DHn to parking
functions, trees, q-Lagrange inversion and the like. In particular, using
either specialization to set both q and t equal to 1, we obtain Theorem 1.4,
as stated in the first lecture:

dimDHn = (n+ 1)n−1.

In our paper, of course, we proved all this modulo the master conjecture
that FDHn(z; q, t) = ∇en. Once we justify the assumptions referred to in
Proposition 7.2, the master conjecture follows.

7.3. VARIATIONS ON THE ZERO-FIBER

Just as we did for R(n, l), we can enquire for the description of R(n, l)/M
as an (Sn × Sl)-module. As before, we define

(R(n, l)/M)ν = HomSl
(V ν , R(n, l)/M).

We conclude as before that its character formula is given by (23), with the
factor Bl+1

µ in the numerator replaced by BµSν[Bµ]. This yields ∇ν applied
to the case l = 1 of (23), or

F(R(n,l)/M )ν = ∇ν∇en.
In particular, this expression is a q, t-Schur positive symmetric function
with polynomial coefficients (since R(n, l)/M is finite dimensional). In [1],
Garsia, F. Bergeron, Tesler and I conjectured, among other things, the
stronger assertion that

∇νen

is q, t-Schur positive for all ν. Operating on the Atiyah–Bott formula with
∇−1 multiplies the numerator by t−n(µ)q−n(µ′) = 1/en[Bµ], which is the T2-
character of the fiber of the line bundle O(−1) = ∧nB∗. Hence the q, t-Schur
positivity of ∇νen would be a consequence of the following improvement of
our vanishing theorem.

CONJECTURE 7.3. We have

H i(Hn,O(−1)⊗ P ⊗ B⊗l) = 0 for i > 0.
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Note that the perfect multiplication pairing P ⊗ P → O(1) implies that
O(−1) ⊗ P is the dual bundle P ∗, so we can also state the conjecture as

H i(Hn, P
∗ ⊗B⊗l) = 0 for i > 0.

It may be possible to prove this by similar techniques to the vanishing
theorem for P ⊗ B⊗l, but I haven’t succeeded in doing so yet. I also don’t
know for sure what space should be identified with H0(Hn, P

∗ ⊗ B⊗l).

7.4. VANISHING THEOREM

To finish, I want to explain how to prove the vanishing theorem we have
been relying upon.

THEOREM 7.4. The canonical map

R(n, l) → H0(Hn, P ⊗ B⊗l)

is an isomorphism, and we have

H i(Hn, P ⊗B⊗l) for i > 0.

This theorem is a consequence of a remarkable recent result of Bridge-
land, King and Reid [3], combined with the results in [17]. The Bridgeland–
King–Reid theorem concerns the Hilbert scheme of orbits V �G, for a finite
group G acting on a complex vector space V as a subgroup of SL(V ). For
all vectors v in a Zariski open subset of V , the stabilizer of v is trivial. The
orbit Gv then has |G| distinct points and represents a point of the Hilbert
scheme Hilb|G|(V ). By definition, V �G is the closure in HilbG(V ) of the
locus formed by such points. There is a canonical “Chow morphism”

σ: V �G→ V/G,

and a commutative diagram

X
f−−−→ V

ρ

y y
V �G

σ−−−→ V/G,

where X is the universal family over V �G. By definition, V �G is reduced
and irreducible, and X is flat over V � G, so X is also reduced. Thus X
is the reduced fiber product in the above diagram. Let D(V � G) be the
derived category of complexes of coherent sheaves on V �G with bounded,
coherent cohomology, and let DG(V ) be the bounded, coherent derived
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category of G-equivariant complexes of sheaves on V . Equivalently, if C[z]
denotes the coordinate ring of V , we can identify DG(V ) with the derived
category of bounded complexes of finitely-generated G-equivariant C[z]-
modules. Consider the derived functor

Φ = Rf∗ ◦ ρ∗:D(V �G) → DG(V ).

The result of Bridgeland–King–Reid is the following remarkable theorem.

THEOREM 7.5. Assuming a certain condition on the dimensions of the
fibers of σ: V �G → V/G holds, we have

(1) σ is a crepant resolution of singularities, that is, V � G is non-
singular and has trivial canonical sheaf, and

(2) the functor Φ:D(V �G) → DG(V ) is an equivalence of categories.

We apply this with V = C2n, G = Sn. In this case we know that Xn

is a flat family over Hn whose generic fibers describe regular Sn-orbits in
C2n. It follows from the universal property of V �G that we get a map

Hn → C2n � Sn

commuting with the Chow morphisms. It is elementary to construct the
inverse map, so we have an isomorphism

C2n � Sn
∼= Hn

identifying Xn with the universal family over C2n �Sn. This shows directly
that C2n�Sn is a crepant resolution of C2n/Sn = SnC2, and the Bridgeland–
King–Reid fiber dimension condition is easy to verify for Hn. Hence the
functor

Φ:D(Hn) → DSn(C2n)

is an equivalence of categories. Identifying DSn(C2n) with the derived cat-
egory of Sn-equivariant C[x, y]-modules, the functor Φ becomes

Φ = RΓ(P ⊗−).

In this terminology, since the cohomology functors H i(Hn,−) are the de-
rived functors RiΓ, Theorem 7.4 reduces to the identity

Φ(B⊗l) = R(n, l).

To prove this, we can equally well prove

ΨR(n, l) = B⊗l ,
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where Ψ is the inverse functor. In the proof of their theorem, Bridgeland–
King–Reid give Ψ explicitly as

Ψ = (ρ∗(ωX ⊗
L
Lf∗−))G.

In our situation ωXn is the line bundle O(−1) pulled back from Hn, and
the Sn action on it is the sign character tensored with the canonical trivial
action. For us, Ψ is therefore given by

Ψ = (ρ∗(O(−1)⊗ Lf∗−))ε.

We have a canonical map R(n, l) → Φ(B⊗l) and a corresponding map
ΨR(n, l) → B⊗l , and we are to show that the latter is an isomorphism
in the derived category. In the derived category there is a distinguished
triangle on the map ΨR(n, l) → B⊗l , and we are equivalently to show
that its apex C is zero. It follows from the freeness theorem for R(n, l),
Theorem 1.8, that R(n, l) has an Sn-equivariant C[x, y]-free resolution of
length n − 1. Using this resolution to compute Lf∗R(n, l), we find that
ΨR(n, l) has a locally free resolution of length n − 1, and hence C has
a locally free resolution of length n. In other words, C is represented as
an object in the derived category by a complex of length n of locally free
sheaves, and we are to show that this complex is exact.

A fundamental result of commutative algebra, known as the new in-
tersection theorem, implies that the cohomology of the complex C, if not
zero, has support of codimension at most n. Outside the locus Zn × C2 of
points I ∈ Hn such that σ(I) is concentrated at a single point P , we can
use induction on n to show that C is locally exact. Thus the support of C
is contained in the (n + 1)-dimensional locus Zn × C2. To show that C is
exact, we need to cut its support down by two more dimensions. We do this
by an explicit calculation showing that C is locally exact on the curvilinear
locus. This suffices, because the non-curvilinear locus has codimension two
in Zn, and completes the proof of Theorem 7.4.

References

1. F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity
conjectures for some remarkable operators in the theory of symmetric functions,
Methods Appl. Anal. 6 (1999), no. 3, 363–420.

2. N. Bergeron and A. M. Garsia, On certain spaces of harmonic polynomials, Hyper-
geometric functions on domains of positivity, Jack polynomials, and applications
(Tampa, FL, 1991), Amer. Math. Soc., Providence, RI, 1992, pp. 51–86.

3. Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an
equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535–554.

4. Jan Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J.
Math. 183 (1998), no. 1, 39–90.



MACDONALD POLYNOMIALS AND HILBERT SCHEMES 63

5. Geir Ellingsrud and Stein Arild Strømme, On the homology of the Hilbert scheme
of points in the plane, Invent. Math. 87 (1987), no. 2, 343–352.
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