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Abstract. In the first part of this article we review the general theory of Cherednik
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1. Introduction

The record is very long. The facts are few and may be briefly stated.
—Miller v. San Francisco Methodist Episcopal (1932)

This article consists of an overview of the theory of Cherednik algebras and non-
symmetric Macdonald polynomials, followed by the combinatorial formula for non-
symmetric Macdonald polynomials of type An−1 recently obtained by Haglund,
Loehr and the author.

The main points in the theory are duality (Theorems 4.10, 5.11), and its con-
sequence, the intertwiner recurrence for Macdonald polynomials (Corollary 6.15),
which is the key to the combinatorial study of non-symmetric Macdonald poly-
nomials. The intertwiner recurrence can also be used to deduce other important
results in the theory, such as the norm and evaluation formulas, but I have omitted
those for lack of space.

The theory of course did not spring into being in the tidy form in which I have
attempted to package it here. Rather, it has been gradually clarified over almost
twenty years through the efforts of many people, in a large literature which I will
not attempt to cite in full. Let me only mention the origins of the theory in the
works of Macdonald [13, 14, 15], Opdam [17], and Cherednik [1, 2] and remark
that further important contributions were made by Ion, Knop, Koornwinder, Sahi,
and van Diejen, among others.

∗Work supported in part by NSF grant DMS-0301072
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The overview given here necessarily has much in common with Macdonald’s
monograph [16], which serves a similar purpose, but there are also several differ-
ences. I have systematically used the lattice formulation for root systems, because
it is most natural from related points of view (algebraic groups, quantum groups),
because it puts affine and other root systems on an equal footing, and because
important elements of the theory (§2, 5.1–5.5, 5.13–5.15) apply to arbitrary root
systems. I give a new and somewhat more general proof of the duality theorem;
Macdonald’s proof, strictly speaking, applies to the root system of SLn, for in-
stance, but not GLn or PGLn, although it can be adjusted to cover these cases. For
the triangularity property of the Macdonald polynomials Eλ (Theorem 6.6), I use
the affine Bruhat order on the weight lattice X, rather than the orbit-lexicographic
order used by Macdonald. This simplifies some arguments, and is more natural in
that the coefficient of xµ in Eλ is non-zero if and only if µ < λ in Bruhat order. I
have also tried to use more transparent notation.

2. Root systems

2.1. We always consider root systems realized in a lattice. So, for us, a root system(
X, (αi), (α∨i )

)
consists of a a finite-rank free abelian group X, whose dual lattice

Hom(X,Z) is denoted X∨, a finite set of vectors α1, . . . , αn ∈ X, called simple
roots, and a finite set of covectors α∨1 , . . . , α

∨
n ∈ X∨, called simple coroots. We

denote by XQ (resp. XR) the Q-vector space X⊗Z Q (resp. R-vector space X⊗Z R)
spanned by X.

The n× n matrix A with entries aij = 〈αj , α
∨
i 〉 is assumed to be a generalized

Cartan matrix, satisfying the axioms

(i) 〈αi, α
∨
i 〉 = 2,

(ii) 〈αj , α
∨
i 〉 ≤ 0 for all j 6= i,

(iii) 〈αj , α
∨
i 〉 = 0 if and only if 〈αi, α

∨
j 〉 = 0.

The Dynkin diagram is the graph with nodes i = 1, . . . , n and an edge {i, j} for
each aij 6= 0, usually with some decoration on the edges to indicate the values
of aij , aji. If the Dynkin diagram is connected, A is indecomposable. If there
exist non-zero integers di such that 〈αj , diα

∨
i 〉 = 〈αi, djα

∨
j 〉 for all i, j, then A is

symmetrizable. The integers di can be assumed positive. If A is symmetrizable
and indecomposable, the di are unique up to an overall common factor. Then di

is length of the root αi. If there are only two root lengths, we call them long and
short. If there is only one root length, every root is both long and short.

2.2. Let α ∈ X and α∨ ∈ X∨ satisfy 〈α, α∨〉 = 2. The linear automorphism

sαα∨(λ) = λ− 〈λ, α∨〉α

of X is a reflection. It fixes the hyperplane 〈λ, α∨〉 = 0 pointwise, and sends α to
−α. Thus (sα,α∨)2 = 1. The reflection on X∨ dual to sα,α∨ is equal to sα∨,α.
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If α∨ is implicitly associated to α, we write sα for both sα,α∨ and sα∨,α. When
α = αi and α∨ = α∨i are a simple root and corresponding coroot, we write si for
sαi

. The si are called simple reflections.

2.3. The root system
(
X, (αi), (α∨i )

)
is non-degenerate if the simple roots αi are

linearly independent. When the Cartan matrix A is non-singular, e.g., for any
finite root system, then both X and its dual

(
X∨, (α∨i ), (αi)

)
are necessarily non-

degenerate. When A is singular, for instance if the root system is affine (Defini-
tion 3.1), it is often convenient to take the simple roots to be a basis of XQ, in
which case X is non-degenerate but its dual is degenerate.

2.4. Assume in what follows that
(
X, (αi), (α∨i )

)
is non-degenerate. The Weyl

group W is the group of automorphisms of X (and of X∨) generated by the simple
reflections si. The sets of roots and coroots are

R =
⋃
i

W (αi), R∨ =
⋃
i

W (α∨i ).

The root and coroot lattices are

Q = Z{α1, . . . , αn} ⊆ X, Q∨ = Z{α∨1 , . . . , α∨n} ⊆ X∨

The set of positive roots is R+ = R ∩Q+, where

Q+ = N{α1, . . . , αn}.

The dominant weights are the elements of the cone

X+ = {λ ∈ X : 〈λ, α∨i 〉 ≥ 0 for all i}.

The root system
(
X, (αi), (α∨i )

)
is finite if W is a finite group, or equivalently,

R is a finite set. The Cartan matrix A of a finite root system is symmetrizable,
with positive definite symmetrization DA. Conversely, if A has a positive definite
symmetrization, then R is finite. The finite root systems classify reductive alge-
braic groups G over any algebraically closed field k. Then X is the character group
of a maximal torus in G, or weight lattice.

Example 2.5. Let X = Zn, and identify X∨ with X using the standard inner
product on Zn such that the unit vectors ei are orthogonal. Let αi = α∨i = ei−ei+1

for i = 1, . . . , n− 1. This gives the root system of the group GLn.
Replacing X with the root lattice Q and restricting the simple coroots to Q,

we obtain the root system of the adjoint group PGLn (GLn modulo its center).
The constant vector ε = e1 + · · · + en satisfies 〈ε, α∨i 〉 = 0 for all i. Let

X ′ = X/(Zε), with simple roots and coroots induced by those of X. This gives
the root system of the simply connected group SLn. It is dual to the root system
of PGLn. All three root systems have the same Cartan matrix, of type An−1.

2.6. We recall some standard facts. First, R = R+ ∪ −R+, i.e., every root is
positive or negative (note that R = −R, since si(αi) = −αi for all i). The Weyl
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group W , with its generating set S of simple reflections si, is a Coxeter group with
defining relations

s2i = 1 (1)
sisjsi · · · = sjsisj · · · (mij factors on each side), (2)

where if aijaji = 0, 1, 2 or 3, then mij = 2, 3, 4, or 6, respectively, and if aijaji ≥ 4,
there is no relation between si, sj .

The length l(w) of w ∈ W is the minimal l such that w = si1 · · · sil
. Such an

expression is called a reduced factorization. More generally, if w = u1u2 · · ·ur with
l(w) = l(u1) + · · ·+ l(ur) we call u1 · u2 · · ·ur a reduced factorization.

If w = sj1 · · · sjl
is a second reduced factorization, then the identity sj1 · · · sjl

=
si1 · · · sil

holds in the monoid with generators si and the braid relations (2), that
is, it does not depend on the relations s2i = 1.

The length of w is equal to the number of positive roots carried into negative
roots by w, i.e., l(w) = |R+∩w−1(−R+)|. In particular, αi is the only positive root
α such that si(α) ∈ −R+. The following conditions are equivalent: (i) l(wsi) <
l(w); (ii) w(αi) ∈ −R+; (iii) some reduced factorization of w ends with si. We
abbreviate these conditions to wsi < w, and write siw < w when w−1si < w−1.

If α = w(αi) = w′(αj), then w(α∨i ) = w′(α∨j ), so there is a well-defined coroot
α∨ = w(α∨i ) associated to α and satisfying 〈α, α∨〉 = 2, and accordingly a well-
defined reflection sα = sα,α∨ = wsiw

−1. Warning: the correspondence α 7→ α∨

need not be bijective if the dual root system is degenerate.
The map W → {±1}, w 7→ (−1)l(w) is a group homomorphism. In particular,

l(sα) is always odd, and l(wsα) 6= l(w). We put wsα < w if l(wsα) < l(w). The
Bruhat order is the partial order on W given by the transitive closure of these
relations.

2.7. The braid group B(W ) is the group with generators Ti and the braid relations
(2) with Ti in place of si. If w = si1 · · · sil

is a reduced factorization, we set
Tw = Ti1 · · ·Til

. These elements are well-defined and satisfy

TuTv = Tuv when uv = u · v is a reduced factorization. (3)

There is a canonical homomorphism B(W ) → W , Ti 7→ si. By the symmetry of
the braid relations, there is an automorphism Ti ↔ T−1

i of B(W ).

2.8. The affine Weyl group of
(
X, (αi), (α∨i )

)
is the semidirect product W nX. In

this context, we use multiplicative notation for the group X, denoting λ ∈ X by
xλ. Explicitly, W nX is generated by its subgroups W and X with the additional
relations

six
λsi = xsi(λ). (4)

2.9. The (left) affine braid group B(W,X) of
(
X, (αi), (α∨i )

)
is the group generated

by B(W ) and X, with the additional relations

Tix
λ = xλTi if 〈λ, α∨i 〉 = 0 (i.e., if si(λ) = λ); (5)

Tix
λTi = xsi(λ) if 〈λ, α∨i 〉 = 1. (6)
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These two relations may be combined into the following analog of (4):

T a
i x

λT b
i = xsi(λ), where a, b ∈ {±1} and 〈λ, α∨i 〉 = (a+ b)/2 (7)

(the case a = b = −1 follows by taking inverses on both sides in (6)). The canonical
homomorphism B(W ) →W extends to a homomorphism B(W,X) →WnX which
is the identity on X.

For clarity when dealing with double affine braid groups later on, we define
separately the right affine braid group B(X,W ), generated by W and X with
additional relations

Tix
λ = xλTi if 〈λ, α∨i 〉 = 0 ; (8)

T−1
i xλT−1

i = xsi(λ) if 〈λ, α∨i 〉 = 1. (9)

There is an isomorphism B(X,W ) ∼= B(W,X) which maps Ti 7→ T−1
i and is the

identity on X.

2.10. If
(
X, (αi), (α∨i )

)
is a non-degenerate root system, the root lattice Q is free

with basis (αi). Identify Q∨ with a quotient of the free abelian group Q̂∨ with
basis (α∨i ), and set P = Hom(Q̂∨,Z). The roots and coroots in X are then given
by homomorphisms Q → X → P , where the matrix of the composite Q → P is
the Cartan matrix A. Suppose that X → P factors through a second lattice X ′ as

Q→ X →
j
X ′ → P.

This induces a root system
(
X ′, (α′i), (α

′∨
i )
)

in X ′ with the same Cartan ma-
trix A and canonically isomorphic Weyl and braid groups W ′ = W , B(W ′) =
B(W ). There is an induced homomorphism of affine braid groups jB : B(W,X) →
B(W,X ′) which restricts to j on X and to the canonical isomorphism on B(W ).

Theorem 2.11. The image of jB : B(W,X) → B(W,X ′) is normal in B(W,X ′),
and the induced maps ker(j) → ker(jB), coker(j) → coker(jB) are isomorphisms.

Proof (outline). First suppose that X ′ = X ⊕ Zν, where 〈ν, α∨i 〉 ∈ {0, 1} for all
i. One proves that there exists an automorphism η of B(W,X) which fixes X,
such that η(Ti) = Ti if 〈ν, α∨i 〉 = 0, and η(Ti) = T−1

i x−αi if 〈ν, α∨i 〉 = 1. Then
one checks that ηZ n B(W,X) ∼= B(W,X ′), with η 7→ xν . Iterating this gives
B(W,X ⊕ P ) ∼= P n B(W,X), and similarly, B(W,X ′ ⊕ P ) ∼= P n B(W,X ′).
Replacing X, X ′ with X ⊕ P , X ′ ⊕ P , we may assume that X → P and X ′ → P
are surjective.

Next one verifies that if X → X ′ is surjective, with kernel Z, then B(W,X ′) ∼=
B(W,X)/Z. Applying this to 0 → Z → X → P → 0 and 0 → Z ′ → X ′ → P → 0,
we get surjections B(W,X) → B(W,P ), B(W,X ′) → B(W,P ) with kernels Z, Z ′.
The theorem then follows by some easy diagram chasing.

2.12. Let
(
X, (αi), (α∨i )

)
be a root system. It may happen that for one or more of

the simple roots αi, we have α∨i ∈ 2X∨. Then we can form another (degenerate)
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root system by adjoining a new simple root 2αi and coroot α∨i /2. Note that
s(2αi),(α∨i /2) = si, so this new root system has the same Weyl group as the original
one, but a larger set of roots R′ = R ∪W (2αi).

If a root system contains two simple roots αi, αi′ such that si = si′ and
αi 6= ±αi′ , it is said to be non-reduced, otherwise it is reduced. We remark that
si′ = si implies αi′ = dαi, α∨i′ = (1/d)α∨i , where d ∈ {±1,±2,±1/2}. Hence every
non-reduced root system is constructed by extensions as above from a reduced root
system with the same Weyl group.

3. Affine root systems and affine Weyl groups

Definition 3.1. A root system
(
X, (αi), (α∨i )

)
, is affine if its Cartan matrix

A is singular, and for every proper subset J of the indices, the root system(
X, (αi)i∈J , (α∨i )i∈J

)
is finite.

3.2. The definition implies that the nullspace of A is one-dimensional. If X is
non-degenerate, then {λ ∈ Q : 〈λ, α∨i 〉 = 0 for all i} is a sublattice of rank 1. It
always has a (unique) generator δ ∈ Q+, called the nullroot.

We index the simple roots by i = 0, 1, . . . , n. We always assume that i = 0
is an affine node, meaning that α0 ∈ Qα + Qδ for some root α of the finite root
system

(
X, (α1, . . . , αn), (α∨1 , . . . , α

∨
n)
)
. This condition is equivalent to s1, . . . , sn

generating the finite Weyl group W0 = W/Q′
0, where W is the Weyl group and Q′

0

is the kernel of its induced action on X/(X ∩Qδ). Every affine root system has at
least one affine node.

3.3. The affine Cartan matrices are classified in Kac [8] and Macdonald [16].
They are symmetrizable and indecomposable. We refer to them using Macdonald’s
nomenclature, but with a tilde over the names to distinguish them from finite types.
Those denoted X̃n, or X(1)

n in Kac, are the untwisted types, where Xn = An, Bn,
Cn, Dn, E6,7,8, F4, or G2 is a Cartan matrix of finite type. Their duals (if different)
B̃∨

n , C̃∨
n , F̃∨

4 , G̃∨
2 are the dual untwisted types, denoted A

(2)
2n−1, D

(2)
n+1, E

(2)
6 , and

D
(3)
4 in Kac.

The remaining mixed types, denoted A(2)
2n in Kac, are exceptional in that they

have three root lengths. Although the mixed types are isomorphic to their duals,
we prefer to distinguish between them, denoting a mixed type as B̃Cn when the
distinguished affine root α0 is the longest simple root, and B̃C

∨
n when α0 is the

shortest simple root.
Types B̃n, C̃∨

n , B̃Cn, B̃C
∨
n contain one or more simple roots αi such that

〈αj , α
∨
i 〉 is even for all j. There exist affine root systems X of these types such

that α∨i ∈ 2X∨. A non-reduced affine root system is a non-reduced extension
(§2.12) of such a root system X.

3.4. The Weyl group Wa of any affine root system
(
X, (αi), (α∨i )

)
is isomorphic

to the affine Weyl group W = Q′
0 oW0 of some finite root system

(
Y, (α′i), (α

′∨
i )
)
.
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Conversely, the affine Weyl group Y oW0 of any finite root system is a semidirect
extension Π n Wa of the Weyl group of a corresponding affine root system. We
now fix precise notation and explain how this correspondence comes about.

3.5. Let
(
Y, (α′i), (α

′∨
i )
)
, i = 1, . . . , n, be a finite root system, with Weyl group W0

and root lattice Q′
0. Let φ′ be the (unique) dominant short root. Let We = Y oW0

be the affine Weyl group of Y , and set Wa = Q′
0 oW0 ⊆ We. Write yλ for λ ∈ Y

regarded as an element of We. The orbit W0(φ′) consists of all the short roots, and
spans Q0. Defining s0 = yφ′sφ′ , it follows that s0 and s1, . . . , sn ∈ W0 generate
Wa. We will construct an affine root system whose Weyl group W is isomorphic
to Wa, with simple reflections corresponding to the generators s0, . . . , sn.

3.6. Let X = Y ∨ ⊕ Z, and fix a non-zero element δ in the second summand. We
need not assume that δ is a generator, so in general we have X = Y ∨ ⊕ Zδ/m for
some positive integer m. Define the pairing 〈X,Y 〉 → Z, extending the canonical
pairing 〈Y ∨, Y 〉 → Z, with 〈δ, Y 〉 = 0.

Let θ = φ′∨ be the highest coroot. For i 6= 0, set αi = α′∨i and α∨i = α′i
(regarded as a linear functional on X via 〈· , ·〉). Put α0 = δ − θ and α∨0 = −φ′.
The subgroup W0 ⊆Wa acts via its original action on Y ∨, fixing δ. The subgroup
Q′

0 ⊆Wa acts by translations, given by the formula

yβ′(µ∨) = µ∨ − 〈µ∨, β′〉δ, (10)

One checks that the element yφ′sφ′ ∈Wa acts as the simple reflection s0, identifying
Wa with the Weyl group W of X.

For Y of type Zn (Z = A,B, . . . , G), the affine root system X just constructed
is of untwisted type Z̃n, with nullroot δ. In this case the affine roots are

R = R′∨0 + Zδ, (11)

and the positive roots are R+ = (R′∨0 + Z>0δ) ∪ (R′∨0 )+.

3.7. Let
(
X, (α0, . . . , αn), (α∨0 , . . . , α

∨
n)
)

be any affine root system, W its Weyl
group. Let Q0, W0 be the root lattice and Weyl group of the finite root system(
X, (α1, . . . , αn), (α∨1 , . . . , α

∨
n)
)
. If X is of untwisted type, we have just seen that

W ∼= Q′
0 oW0, where Q′

0 = Q∨
0 . If X∨ is of untwisted type, then W ∼= W (X∨) ∼=

Q′
0 o W0, where Q′

0 = (Q∨
0 )∨ = Q0. If X is of mixed type, its Weyl group is of

type C̃n, so W ∼= Q′
0 oW0 where Q′

0 is of type Cn, hence Q′
0 = Q∨

0 for B̃Cn, and
Q′

0 = Q0 for B̃C
∨
n .

3.8. Twisted affine root systems can also be constructed in the manner of §3.6,
by taking θ to be any dominant coroot of Y or of a non-reduced finite root system
containing Y . This yields dual untwisted types when θ is short, and mixed types
when θ is one-half of a long coroot or twice a short coroot. However, when θ 6= φ′∨,
we no longer have W = Q′

0 oW0.

3.9. We now return to the situation of §3.5, fixing the finite root system Y and
untwisted affine root system X = Y ∨ ⊕ Zδ/m in what follows. The affine Weyl
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group We = Y oW0 of Y is called the extended affine Weyl group. The action of Q′
0

on X given by (10) extends to an action of Y , hence the action of Wa = Q′
0 oW0

extends to We. By (11), We preserves the set of affine roots R.

3.10. The further properties of Wa and We are best understood in terms of the
following “alcove picture.” Let H = {x ∈ X∨

R : 〈δ, x〉 = 1} be the level 1 plane,
and let Λ∨0 ∈ H be the linear functional Λ∨0 (Y ∨) = 0, 〈δ,Λ∨0 〉 = 1. The group We

fixes δ, hence acts on H. The translations Y ⊂We act on H by

yλ(µ) = µ+ λ, (12)

and the finite Weyl group W0 is generated by reflections fixing Λ∨0 . In particular,
the map yλ 7→ Λ∨0 + λ identifies Y ∼= We/W0 with the orbit We(Λ∨0 ) ⊂ H, equiv-
ariantly with respect to the original action of W0 on Y , and the action of Q′

0 ⊆ Y
by translations.

Each affine root α ∈ R induces an affine-linear functional α(x) = 〈α, x〉 on
H. Its zero set hα = {x ∈ H : α(x) = 0} is an affine hyperplane in H, and
sα ∈ W = Wa fixes hα pointwise. The space H is tessellated by affine alcoves
bounded by the root hyperplanes hα. We distinguish the dominant alcove A0 =
H ∩ (R+X

∨
+) = {x ∈ H : α(x) ≥ 0 for all α ∈ R+}.

The alcove A0 is a fundamental domain for the action of Wa on H. Its walls
are the root hyperplanes hαi for the simple affine roots α0, . . . , αn. Let Π ⊆ We

be the stabilizer of A0, or equivalently, Π = {π ∈ We : π(R+) = R+}. Since Π
preserves the set of simple roots, it normalizes the subgroup Wa ⊆We and the set
of Coxeter generators S = {s0, . . . , sn} ⊆Wa. The following are immediate.

Corollary 3.11. With the notation above, we have We = Π n Wa. Moreover, Π
is the normalizer in We of the set of Coxeter generators S = {s0, . . . , sn}.

Corollary 3.12. The canonical homomorphism Y ⊂ We → We/Wa = Π induces
an isomorphism Y/Q′

0
∼= Π. In particular, Π is abelian.

To make this explicit, write π ∈ Π uniquely as

π = yλπ · vπ ∈ Y oW0. (13)

Then π maps to the coset of λπ in Y/Q′
0. In the notation of §3.10, we have

Λ∨0 + λπ = yλπ (Λ∨0 ) = π(Λ∨0 ) ∈ A0. Equivalently, λπ ∈ Y is a dominant weight
such that 〈λ, φ′∨〉 ≤ 1, or minuscule weight. Conversely, if λ ∈ Y is minuscule,
there is a unique π ∈ Π such that yλ−λπ ∈Wa. Then λ = λπ, because both weights
are minuscule and A0 is a fundamental domain for Wa. The minuscule weights λπ

(including λ1 = 0) are thereby in bijection with Π.

3.13. The distinguished elements

yφ′ = s0sφ′ , yλπ = πv−1
π , (14)

where φ′ is the dominant short root and λπ are the minuscule weights, are char-
acterized as the unique translations such that s0 ∈ yφ′W0, π ∈ yλπW0, consistent
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with our having written We = Y o W0. If we write We = W0 n Y , we instead
distinguish the translations

y−φ′ = sφ′s0, y−λπ = vππ
−1 (15)

corresponding to the anti-dominant short root and the “anti-minuscule” weights.
Of course (14) and (15) are equivalent, but the corresponding formulas for the left
and right affine braid groups will not be (see Theorem 4.2, Corollary 4.3).

4. Double affine braid groups

4.1. Let We = Y oW0 = ΠnWa be an extended affine Weyl group (§3.9–3.13). By
Corollary 3.11, Π acts on Wa by Coxeter group automorphisms. Hence Π also acts
on B(Wa), and we can form the extended affine braid group B(We) = Π n B(Wa).

Define the length function onWe = ΠnWa by l(πw) = l(w). Note that l(wπ) =
l(πwπ) = l(wπ) = l(w). The length of v = πw is again equal to |R+ ∩ v−1(−R+)|,
or to the number of affine hyperplanes hα separating v(A0) from A0 in the alcove
picture (§3.10). Identity (3) continues to hold in B(We).

The counterpart to Corollary 3.11 is the following theorem of Bernstein (see [9,
(4.4)]).

Theorem 4.2. The identification Π n Wa = Y o W0 lifts to an isomorphism
B(We) ∼= B(Y,W0) between the extended affine braid group defined above, and the
(right) affine braid group (§2.9) of the finite root system Y . The isomorphism is
the identity on B(W0) and given on the remaining generators by yφ′ ↔ T0Tsφ′ ,
yλπ ↔ πTv−1

π
, in the notation of §3.5 and (13).

We describe the restriction of the isomorphism to Y ⊆ B(Y,W0) more explicitly.
If λ, µ ∈ Y+ are dominant, the alcove picture shows that l(yλ+µ) = l(yλ) + l(yµ).
Hence Tyλ+µ = TyλTyµ in B(We). It follows that there is a well-defined group
homomorphism φ : Y → B(We) such that yλ−µ 7→ TyλT−1

yµ for λ, µ ∈ Y+. In
particular, this yields the formulas yφ′ 7→ Tyφ′ = T0Tsφ′ , y

λπ 7→ Tyλπ = πTv−1
π

.
One verifies using the alcove picture that the elements φ(yλ) and the generators

Ti of B(W0) satisfy the defining relations of B(Y,W0). Hence φ extends to a ho-
momorphism B(Y,W0) → B(We). Next one verifies (with the help of Lemma 4.20,
below) that the element yφ′T−1

sφ′
∈ B(Q′

0,W0) satisfies braid relations with the gen-
erators Ti, giving a homomorphism B(Wa) → B(Q′

0,W0) inverse to φ. Hence φ
maps B(Q′

0,W0) isomorphically onto B(Wa), and by Theorem 2.11, it follows that
φ is an isomorphism.

Corollary 4.3. For a (left) extended affine Weyl group Wa o Π = W0 nX, there
is an isomorphism B(We) ∼= B(W0, X) between the extended affine braid group
and the left affine braid group of X, which is the identity on B(W0), and satisfies
x−φ ↔ Tsφ

T0, x−λπ ↔ Tvπ
π−1.
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4.4. We come now to the key construction in the theory. Fix two finite root systems(
X, (αi), (α∨i )

)
,
(
Y, (α′i), (α

′∨
i )
)

with the same Weyl group W0. More accurately,
assume given an isomorphism of Coxeter groups W0 = (W (X), S) ∼= (W (Y ), S′),
and label the simple roots so that si corresponds to s′i for each i = 1, . . . , n.

Let φ ∈ Q0 ⊆ X, φ′ ∈ Q′
0 ⊆ Y be the dominant short roots. Let θ ∈ Q0,

θ′ ∈ Q′
0 be the dominant roots such that sθ = sφ′ , sθ′ = sφ. There are unique W0-

equivariant pairings (X,Q′
0) → Z, (Q0, Y )′ → Z such that (β, φ′) = 〈β, θ∨〉 for all

β ∈ X and (φ, β′)′ = 〈β′, θ′∨〉 for all β′ ∈ Y . One checks that (φ, φ′) = (φ, φ′)′ = 2
if sφ = sφ′ , and (φ, φ′) = (φ, φ′)′ = 1 if sφ 6= sφ′ . By W0-equivariance, the two
pairings therefore agree on Q0 × Q′

0. Fix a W0-invariant pairing (X,Y ) → Q
extending the two pairings (· , ·) and (· , ·)′, and choose m such that (X,Y ) ⊆ Z/m.

Remark 4.5. The Cartan matrices of X and Y are clearly either of the same
type (Zn, Zn), or of dual types (Zn, Z

∨
n ). In the symmetric case (Zn, Zn), the

roots θ = φ, θ′ = φ′ are short, and the pairing (· , ·) restricts on Q0 = Q′
0 to

the W0-equivariant pairing such that (α, α) = 2 for short roots α. In the dual
case (Zn, Z

∨
n ), θ and θ′ are long, and the pairing restricts to the canonical pairing

between Q0 and Q′
0 = Q∨

0 . Types G2 and F4 are isomorphic to their duals, but
only after relabelling the simple roots. Thus there is a genuine difference between
types (G2, G2) and (G2, G

∨
2 ), for instance. In particular, θ = φ in the first case,

and θ 6= φ in the second.

4.6. Given the data in §4.4, set X̃ = X ⊕ Zδ/m, Ỹ = Y ⊕ Zδ′/m. Extend the
linear functionals α∨i on X to X̃ so that 〈δ, α∨i 〉 = 0. Define α0 = δ − θ, and let
α∨0 be the extension of −θ∨ such that 〈δ, α∨0 〉 = 0. Making similar definitions in
Ỹ , we get two affine root systems(

X̃, (α0, . . . , αn), (α∨0 , . . . , α
∨
n)
)
,
(
Ỹ , (α′0, . . . , α

′
n), (α′∨0 , . . . , α

′∨
n )
)
.

Let Y act on X̃ and X on Ỹ by

yλ(µ) = µ− (µ, λ)δ, xµ(λ) = λ− (µ, λ)δ′.

Since (· , ·) is W0-invariant, this extends to actions of the extended affine Weyl
groups

We = Y oW0, W ′
e = W0 nX

on X̃ and Ỹ , respectively. The semidirect products We n X̃, Ỹ oW ′
e are the (left,

right) extended double affine Weyl groups. We have the following easy counterpart
of Corollary 3.11.

Corollary 4.7. There is a canonical isomorphism We n X̃ ∼= Ỹ o W ′
e, which is

the identity on X, Y and W0, and maps q = xδ to y−δ′ . In fact, both groups are
identified with W0 n (X ?Y ), where X ?Y is the Heisenberg group generated by X,
Y and central element q1/m, with relations

xµyλ = q(µ,λ)yλxµ.
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Remarks 4.8. (a) For consistency, set q = y−δ′ in the “right” double affine Weyl
group Ỹ oW ′

e. Then the isomorphism maps q to q.

(b) When X and Y are of dual types, the affine root systems X̃, Ỹ are of
untwisted type (§3.6). When X and Y are of the same type, then X̃, Ỹ are of dual
untwisted type (§3.8).

(c) The requirement that (· , ·) extend the pairings (X,Q′
0) → Z and (Q0, Y

′)′ →
Z in §4.4 ensures that

We 3 yφ′sφ′ = s0 ∈W (X̃), W ′
e 3 sφx

−φ = s′0 ∈W (Ỹ ).

Under the action of We = Y oW0 = ΠnWa on X̃, the subgroup Wa = Q′
0 oW0 is

therefore identified with the Weyl group of X̃. By Corollary 3.11, Π ⊂We acts on
X̃ by automorphisms of the root system, i.e. it permutes the affine simple roots
and coroots. So We acts on X̃ as the semi-direct product of the Weyl group Wa

and the group of automorphisms Π. In particular, the extended double affine Weyl
group We n X̃ is the semidirect product

Π n (Wa n X̃)

of Π with the affine Weyl group (§2.8) of the affine root system X̃. Similar remarks
apply to Ỹ oW ′

e.

4.9. Since Π acts by automorphisms of the affine root system X̃, it also acts nat-
urally on B(Wa, X̃) (§2.9), and we can form the semidirect product ΠnB(Wa, X̃),
which we may regard as an extended (left) affine braid group B(We, X̃) of the
affine root system X̃. Similarly, we can define B(Ỹ ,W ′

e) = B(Ỹ ,W ′
a) o Π′. Define

q = xδ in B(We, X̃), and q = y−δ′ ∈ B(Ỹ ,We), as in Remark 4.8(a). We come now
to the fundamental theorem.

Theorem 4.10. The isomorphism We n X̃ ∼= Ỹ o W ′
e lifts to an isomorphism

B(We, X̃) ∼= B(Ỹ ,W ′
e), which is the identity on X, Y , and B(W0), and maps

q = xδ to q = y−δ′ . (Here X, Y are identified with their images under B(W0, X) ∼=
B(W ′

e) → B(Ỹ ,W ′
e) and B(Y,W0) ∼= B(We) → B(We, X̃), using Theorem 4.2 and

Corollary 4.3)

The group B(We, X̃) = B(Ỹ ,W ′
e) is the (extended) double affine braid group.

4.11. By §2.9, there is an isomorphism Φ: B(Ỹ ,W ′
e) → B(W ′

e, Ỹ ) given by

Φ(yλ) = yλ Φ(T ′0) = T ′−1
0

Φ(π) = π′ (π′ ∈ Π′) Φ(Ti) = T−1
i (i = 1, . . . , n).
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The element T0 ∈ B(Ỹ ,W ′
e) is defined by T0 = yφ′T−1

sφ′
, whereas T0 ∈ B(W ′

e, Ỹ ) is

defined by T0 = T−1
sφ′
y−φ′ . Similarly, Π → B(Ỹ ,W ′

e) is given by π = yλπvπ 7→
yλπT−1

v−1
π

, whereas Π → B(W ′
e, Ỹ ) is given by π−1 7→ T−1

vπ
y−λπ , hence π 7→

yλπTvπ
. Moreover, X is embedded in B(Ỹ ,W ′

e) via the identification B(W ′
e) =

Π′ n B(W0, X), which is characterized by x−φ 7→ Tsφ
T0 and x−λπ′ 7→ Tvπ′π

′−1,
whereas X ⊂ B(W ′

e, Ỹ ) is given via B(W ′
e) = B(X,W0) o Π′ by xφ 7→ T0Tsφ

,
xλπ′ 7→ π′Tv−1

π′
. In B(W ′

e, Ỹ ), finally, q denotes yδ′ . Taking into account that

Φ(Tw) = T−1
w−1 for all w ∈W0, all this implies

Φ(xµ) = xµ Φ(T0) = T−1
0

Φ(π) = π (π ∈ Π) Φ(q) = q−1.

Theorem 4.10 therefore has the following equivalent alternate formulation.

Corollary 4.12. There is an isomorphism B(We, X̃) ∼= B(W ′
e, Ỹ ), which is the

identity on X, Y , Π and Π′, maps q = xδ to q−1 = y−δ′ , and maps the generators
Ti of B(W0) to T−1

i .

4.13. Cherednik [1] announced Theorem 4.10 in the case X = Y , and suggested a
possible topological proof, which was completed by Ion [7]. Macdonald [16, 3.5–3.7]
gave an elementary proof, which however involves quite a bit of case-checking and
only applies when X = Hom(Q∨

0 ,Z), Y = Hom(Q′∨
0 ,Z). We now outline a different

elementary proof. First assume that the theorem holds in the “unextended” case,
X = Q0, Y = Q′

0, We = Wa, W ′
e = W ′

a. We will deduce the general case.
By Theorem 2.11, B(Q̃′

0,W
′
a) embeds in B(Ỹ ,W ′

a) as a normal subgroup, with
quotient Ỹ /Q̃′

0 = Y/Q′
0
∼= Π. Moreover, Π ⊆ B(We) = B(Y,W0) is a subgroup of

B(Ỹ ,W ′
a), giving the semidirect decomposition B(Ỹ ,W ′

a) ∼= Π n B(Q̃′
0,W

′
a). By

assumption, we have B(Wa, Q̃0) ∼= B(Q̃′
0,W

′
a), hence B(Ỹ ,W ′

a) ∼= ΠnB(Wa, Q̃0) =
B(We, Q0). This establishes the case where X = Q0 and Y is general. Exchanging
X and Y , we also get the case Y = Q′

0, We = Wa, where now X and W ′
e are

general.
By definition, B(Q̃′

0,W
′
e) = B(Q̃′

0,W
′
a) o Π′ and B(Ỹ ,W ′

e) = B(Ỹ ,W ′
a) o Π′,

with Π′ ∼= X/Q0 the same for both groups. Again, Theorem 2.11 implies that the
first group is a normal subgroup of the second, with quotient Π. So we can repeat
the preceding argument to get the general case.

4.14. Now fix X = Q0, Y = Q′
0, so We = Wa, W ′

e = W ′
a. Using Theorem 4.2

and Corollary 4.3, we identify B(W ′
a) = B(W0, X), B(Wa) = B(Y,W0). Then

each group B(Wa, X̃), B(Ỹ ,W ′
a) has generators T0, T ′0, T1, . . . , Tn, q1/m. In both

groups, q1/m is central, the generators T0, T1, . . . , Tn satisfy the braid relations of
B(Wa), and T ′0, T1, . . . , Tn satisfy those of B(W ′

a).
The additional relations (7) for λ ∈ Q0 and i = 0 complete a presentation

of B(Wa, X̃), since those for i 6= 0 already hold in B(W0, X) = B(W ′
a). For

convenience, we write down these extra relations again here, after applying the
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identity 〈λ, α∨0 〉 = −〈λ, θ∨〉:

T a
0 x

λT b
0 = xs0(λ), where a, b ∈ {±1} and −〈λ, θ∨〉 = (a+ b)/2. (16)

In view of Corollary 4.12, to prove the theorem it suffices to express (16) in a “self-
dual” form, in the sense that the substitutions T0 ↔ T ′−1

0 , Ti ↔ T−1
i , q ↔ q−1

(i 6= 0) should transform (16) into its counterpart with the roles of X and Y
interchanged.

Lemma 4.15. Relations (16) reduce to the case when λ is a short positive root
α 6= θ (i.e., α 6= φ if θ = φ is short).

Proof. The short roots β 6= ±θ span Q0. Hence we can always write λ = β1 +
· · · + βm, where βi ∈ (R0)short \ {±θ}. In particular, 〈βi, θ

∨〉 ∈ {0,±1} for all
i. Given that 〈λ, θ∨〉 ∈ {0,±1}, we can always order the βi so that those with
〈βi, θ

∨〉 = 1 and those with 〈βi, θ
∨〉 = −1 alternate. Writing (16) in the form

T a
0 x

λ = xs0(λ)T−b
0 , it is easy to see that it follows from the same relation for each

βi. This reduces us to the case that α 6= ±θ is a short root. The case of (16) for
〈λ, θ∨〉 = 1 implies the case for 〈λ, θ∨〉 = −1, so positive roots α suffice.

4.16. A parabolic subgroup of W0 is a subgroup of the form WJ = 〈si : i ∈ J〉,
where J ⊆ {1, . . . , n}. Since φ and φ′ are dominant, their stabilizers are parabolic
subgroups WJ , WJ′ respectively, where J = {i : 〈φ, α∨i 〉 = 0}, and J ′ = {i :
〈φ′, α′∨i 〉 = 0}. Recall that each left, right and double coset vWJ , WJ′v, WJ′vWJ

has a unique representative of minimal length, which is also minimal in the Bruhat
order.

Proposition 4.17. Relations (16) for λ = α 6= θ a short positive root reduce to
the following.

(a) For v such that (v(φ), φ′) = 0 and v minimal in WJ′vWJ , the relation

T0 TvT
′−1
0 T−1

v = TvT
′−1
0 T−1

v T0.

(b) For v = v1 such that (v(φ), φ′) = 1 and v minimal in WJ′vWJ , define v2,
v3, v4 minimal respectively in WJ′vsφWJ , WJ′sθvsφWJ , WJ′sθvWJ ; this given,
the relation

T−1
0 Tv1T

′−1
0 T−1

v2
T−1

0 Tv3T
′−1
0 T−1

v4
= q.

Proof. We can always write α = v(φ) with v minimal in vWJ . If i ∈ J ′, then Ti

commutes with T0. In B(W ′
a) = B(W0, Q0) we have xsi(α) = T ε

i x
αT ε′

i , ε, ε′ = ±1
for every positive short root α. These facts imply that relations (16) are invariant
under replacement of α with w(α) ∈ WJ′α. Hence we can assume v minimal in
WJ′vWJ .

We show that when 〈α, θ∨〉 = (v(φ), φ′) = 0, relation (16), which in this case
reads T0x

α = xαT0, is equivalent to (a). The minimality of v in vWJ implies
that if v = si1 · · · sil

is a reduced factorization, then 〈sik+1 · · · sil
(φ), α∨ik

〉 = 1 for
all k. Hence xα = Tvx

φTv−1 = TvT
′−1
0 T−1

sφ
Tv−1 . The minimality also implies

that sφ = v−1sαv is a reduced factorization. Therefore T−1
sφ
Tv−1 = T−1

v T−1
sα

, and
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xα = TvT
′−1
0 T−1

v T−1
sα

. Now, since 〈α, θ∨〉 = 0, we have s0sα = sαs0, and both
sides of this equation are reduced factorizations. Hence T0 commutes with Tsα

, so
(16) is equivalent to T0 commuting with TvT

′−1
0 T−1

v .
For 〈α, θ∨〉 = (v(φ), φ′) = 1, we have s0(α) = α + α0 = α − θ + δ, and

thus relation (16) in this case reads T−1
0 xαT−1

0 = qx−β , or T−1
0 xαT−1

0 xβ = q,
where β = −sθ(α) satisfies α + β = θ. Let u be the minimal representative of
sθvsφWJ . Then β = u(φ), and the same reasoning as in the previous paragraph
gives xα = TvT

′−1
0 T−1

vsφ
, xβ = TuT

′−1
0 T−1

usφ
. Our relation now takes the form

T−1
0 TvT

′−1
0 T−1

vsφ
T−1

0 TuT
′−1
0 T−1

usφ
= q. (17)

Using §2.6 and the fact that sφ(αi) = αi for all i ∈ J , we deduce (for any J ′)

(*) if x, y are minimal in WJ′x, WJ′y = WJ′xsφ, respectively, and xw
is minimal in WJ′xWJ , then yw is minimal in WJ′yWJ .

By construction, u and v are minimal in their left WJ cosets, and (*) implies the
same for usφ and vsφ. Hence the elements v1 = v, v2, v3, v4 defined in (b) are
the minimal representatives of WJ′v, WJ′vsφ, WJ′u, WJ′usφ respectively. By the
analog of (*) for sθ (operating on the left), we see that v1 = v implies v4 = usφ,
and if we set v2 = wvsφ, then v3 = wu. Now w ∈WJ′ commutes with T0, and the
factorizations vsφ = w−1v2, u = w−1v3 are reduced, so (17) reduces to (b).

Corollary 4.18. The (unextended) double affine braid group B(Wa, Q̃0), where
B(Wa) = B(Q′

0,W0), has a presentation with generators T0, T ′0, T1, . . . , Tn, q1/m

and the following (manifestly self-dual) relations: q1/m is central; braid relations
for T0, T1, . . . , Tn ∈ B(Wa) and for T ′0, T1, . . . , Tn ∈ B(W ′

a); and the relations in
Proposition 4.17.

Example 4.19. Let X = Y be of type An−1, with αi = α∨i = ei − ei+1 as in
Example 2.5. Then φ = θ = φ′ = θ′ = e1 − en, and WJ = WJ′ = 〈s2, . . . , sn−2〉.
The presentation of B(Wa, Q̃0) is given by q central, braid relations and

(a) T0 commutes with T1Tn−1T
′−1
0 (T1Tn−1)−1,

(b) T−1
0 T1T

′−1
0 T−1

1 T−1
2 · · ·T−1

n−1T
−1
0 Tn−1T

′−1
0 T−1

n−1T
−1
n−2 · · ·T

−1
1 = q.

There are seven double cosets WJvWJ′ . Two have v(φ) = ±φ, one yields (a), and
the other four provide the elements v1, . . . , v4 in (b). In fact, in every type there
turns out to be only one relation of type (b) and at most two of type (a), except
for D̃4, which has three of type (a).

Lemma 4.20. If φ is the dominant short root of a finite root system X, and
v ∈W0 is such that α = v(φ) ∈ (R0)+, then in B(W0, X) we have

Tvx
φTsφ

T−1
v = xαTsα

.

Proof. This reduces to the case that v is minimal in vWJ (in the notation of
§4.16). As in the proof of Proposition 4.17 we then have Tvx

φTsφ
= xαT−1

v−1Tsφ
=

xαTsαTv.
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Lemma 4.20 will be used in the proof of Theorem 5.11. Its variant for B(Y,W0)
is T−1

v−1y
φT−1

sφ
Tv−1 = yαT−1

sα
, which is useful for verifying the braid relations in the

proof of Theorem 4.2.

5. Hecke algebras and Cherednik algebras

5.1. Let
(
X, (αi), (α∨i )

)
be a non-degenerate root system, with Cartan matrix A,

Weyl group W , and roots R. To each W -orbit in R we associate a parameter uα,
uα = uβ if β = w(α). Set ui = uαi . The ui are assumed to be invertible elements
of some commutative ground ring A. If α∨i ∈ 2X∨, we also introduce a second
parameter u′i.

Lemma 5.2. Let H be an A-algebra containing the group algebra AX, and Ti ∈ H.
(i) If α∨i 6∈ 2X∨, then commutation relations (5)–(6) and the quadratic relation

(Ti − ui)(Ti + u−1
i ) = 0 (18)

imply the more general commutation relations, for all λ ∈ X,

Tix
λ − xsi(λ)Ti =

(ui − u−1
i )

1− xαi
(xλ − xsi(λ)). (19)

(ii) If α∨i ∈ 2X∨, then (5)–(6), (18) and the additional quadratic relation

(T−1
i x−αi − u′i)(T

−1
i x−αi + u′−1

i ) (20)

imply

Tix
λ − xsi(λ)Ti =

(ui − u−1
i ) + (u′i − u′−1

i )xαi

1− x2αi
(xλ − xsi(λ)) (21)

(iii) Given (18), relation (21) implies (20), and (19) implies that (20) holds
with u′i = ui.

Note that the denominators in (19), (21) divide xλ − xsi(λi).
For the well-known proof, observe that each side of (19), (21), viewed as an

operator on xλ, satisfies F (xλxµ) = F (xλ)xµ + xsi(λ)F (xµ). Hence (19), (21) for
xλ, xµ, imply the same for xλ±µ. This reduces (i) to the special cases 〈λ, α∨i 〉 ∈
{0, 1}, which in turn reduce to (5)–(6), using the identity T−1

i = Ti − ui + u−1
i ,

which is equivalent to (18). Similarly, (ii) reduces to the special cases 〈λ, α∨i 〉 = 0,
which is (5) ((6) is vacuous if α∨i ∈ 2X∨), and λ = αi (since 〈αi, α

∨
i 〉 = 2). Modulo

(18), this last case is equivalent to (20), which also gives (iii) in case (ii). For (iii)
in case (i), observe that (19) is just (21) with u′i = ui.

Definition 5.3. The affine Hecke algebra H(W,X) is the quotient (AB(W,X))/j,
where j is the 2-sided ideal generated by the quadratic relations (18) for all i, plus
(20) for each i such that α∨i ∈ 2X∨.

Equivalently, H(W,X) is generated by elements xλ (λ ∈ X) and Ti satisfying
the braid relations of B(W ), quadratic relations (18), and relations (19) or (21)
depending on whether or not α∨i ∈ 2X∨.
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Proposition 5.4. The subalgebra of H(W,X) generated by the elements Ti is
isomorphic to the ordinary Hecke algebra H(W ), with basis {Tw : w ∈ W}, and
H(W,X) has basis {Twx

λ}.

Proof. The commutation relations (19), (21) imply that the elements Twx
λ span;

they are independent because the specialization ui = u′i = 1 collapses H(W,X) to
the group algebra A · (W n X). (More precisely, specialization implies the result
for A = Z[u±1

i , u′±1
i ], and the general case follows by extension of scalars.)

5.5. Let Π be a group acting by automorphisms of the root system
(
X, (αi), (α∨i )

)
,

and assume that ui = uj , u′i = u′j for αj ∈ Π(αi). Then Π acts onH(W,X), and we
define the extended affine Hecke algebra to be the twisted group algebra Π·H(W,X)
generated by Π and H(W,X) with relations πf = π(f)π for π ∈ Π, f ∈ H(W,X).

Up to now the root systemX was arbitrary. IfX is finite, withW0nX = WaoΠ
as in Corollary 4.3, then H(W0, X) is isomorphic to the twisted group algebra
H(Wa) ·Π of the ordinary Hecke algebra of Wa. The most interesting case is when
X is affine; specifically when X = X̃ as constructed in §4.6.

Definition 5.6. Given X, Y , (· , ·), X̃, Ỹ , We = Π n Wa, W ′
e = W ′

a o Π′ as
in §4.4–4.9, the (left) Cherednik algebra H(We, X̃) is the extended affine Hecke
algebra Π · H(Wa, X̃).

Equivalently, H(We, X̃) is generated by xλ ∈ X, π ∈ Π, T0, . . . , Tn and q±1/m,
satisfying the relations of the double affine braid group B(We, X̃) and the quadratic
relations (18), plus (20) if α∨i ∈ 2X̃∨.

5.7. We will also define a right Cherednik algebra H(Ỹ ,W ′
e), but first we must

re-index the parameters. For convenience, we define u′j = uj if α∨j 6∈ 2X̃∨. Define
ui′ = ui for i 6= 0, and set u0′ = u′j , where αj is a short simple root of the finite
root system X. If α′∨i ∈ 2Ỹ ∨ for i 6= 0 (there is at most one such index i), set
u′i′ = u0 . If α′∨0 ∈ 2Ỹ ∨, set u′0′ = u′0.

We now define H(Ỹ ,W ′
e) to be the algebra with generators yµ (µ ∈ Y ), π′ ∈

Π′, T ′0, T1, . . . , Tn, q±1/m satisfying the relations of the right affine braid group
B(Ỹ ,W ′

e), relations (18) with ui′ in place of ui, and for α′∨i ∈ 2Ỹ ∨, the relations

(T ′−1
i yα′i − u′i′)(T

′−1
i yα′i + u′−1

i′ ), (22)

where we define T ′i = Ti if i 6= 0.

Corollary 5.8. The elements {yµTwx
λ} (µ ∈ Y , λ ∈ X, w ∈ W0) form an

A[q±1/m]-basis of the Cherednik algebras H(We, X̃), H(Ỹ ,W ′
e).

This follows easily from Proposition 5.4 for H(We, X̃) and by symmetry for
H(Ỹ ,W ′

e). We remark that the factors yµTwx
λ can be taken in any order.

Lemma 5.9. We have α′∨0 ∈ 2Ỹ ∨ if and only if X, Y are both of type Bn and Π
acts trivially on the simple roots of X̃.
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Proof. By definition, α′∨0 = −θ′∨. We can only have θ′∨ ∈ 2Y ∨ if Y is of type
Bn and θ = φ is short, hence X is also of type Bn. Let P ′

0 be the image of the
canonical homomorphism Y → Hom(Q′∨

0 ,Z). For type Bn we have either Q′
0 = P ′

0

or P ′
0/Q

′
0
∼= Z/2Z, with Q′

0 = P ′
0 iff the short roots α′ satisfy α′∨ ∈ 2Y ∨. The

isomorphism Π ∼= Y/Q′
0 (Corollary 3.12) identifies P ′

0/Q
′
0 with the quotient of Π

by the kernel of its action on the simple roots of X̃.

Remark 5.10. If X, Y are of type Bn, then X̃, Ỹ are of type C̃∨
n . Label the

Dynkin diagram
•⇐•—•— · · ·—•⇒•
0 1 2 n−1 n

. (23)

If α′∨0 6∈ 2Ỹ ∨, then Π acts non-trivially, exchanging nodes 0 and n, and similarly
for α∨0 and Π′. The four associated parameters are related by the diagram

(u′0 = u′0′) = (u′n = u0′)
‖ ‖

(u0 = u′n′) = (un = un′) , (24)

where the horizontal equalities hold if α′∨ 6∈ 2Y ∨ for short roots α′ ∈ Y , and the
vertical ones hold if α∨ 6∈ 2X∨ for short roots α ∈ X.

Theorem 5.11. There is an isomorphism H(We, X̃) ∼= H(Ỹ ,W ′
e), which is the

identity on all the generators X, Y , q, Ti, T0, T ′0, π, π
′.

Proof. For the most part, this is Theorem 4.10, but we must prove that relations
(22) and the case of (18) for T ′0 hold in H(We, X̃). By definition, T ′0 = T−1

sφ
x−φ.

By Lemma 4.20, this is conjugate to T−1
j x−αj for a short simple root αj . Then

(20) for Tj implies (18) for T ′0. Similarly, if i 6= 0 in (22), then α′i is short, and
T ′−1

i yαi is conjugate to yαiT ′−1
i and in turn to T0 = yφ′T−1

sφ′
. By Lemma 5.9, we

only have i = 0 in (22) when X, Y are both of type Bn, so θ = φ, θ′ = φ′. Then
T ′−1

0 yα′0 = q−1xφTsφ
y−φ′ = x−α0T−1

0 , which is conjugate to T−1
0 x−α0 .

Corollary 5.12. Assume given an automorphism ε : A → A such that ε(ui) = u−1
i ,

ε(u′i) = u′−1
i . Then there is an ε-linear isomorphism H(We, X̃) ∼= H(W ′

e, Ỹ )
which is the identity on X, Y , Π, Π′, maps q to q−1, and maps Ti to T−1

i for all
i = 0′, 0, 1, . . . , n, where the parameters ui′ , u′i′ for H(W ′

e, Ỹ ) are as in §5.7.

Proof. The map Φ in §4.11, composed with ε, preserves (18) and interchanges (22)
with the version of (20) for Ỹ in place of X̃.

5.13. Let H = Π · H(W,X) be an extended affine Hecke algebra. The ordinary
(extended) Hecke algebra Π · H(W ) has a one-dimensional representation 1 = Ae
such that πe = e, Tie = uie. The induced representation IndHΠH(W )(1) is the
polynomial representation. Proposition 5.4 implies that it is isomorphic to the left
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regular representation AX of X, with Π acting via its action on X, and T0, . . . , Tn

acting as the operators

Ti = uisi +
(ui − u−1

i )
1− xαi

(1− si) (25)

= ui − u−1
i

1− u2
ix

αi

1− xαi
(1− si) (26)

= −u−1
i + ui(1 + si)

1− u−2
i xαi

1− xαi
(27)

or, if α∨i ∈ 2X∨,

Ti = uisi +
(ui − u−1

i ) + (u′i − u′−1
i )xαi

1− x2αi
(1− si) (28)

= ui − u−1
i

(1− uiu
′
ix

αi)(1 + (ui/u
′
i)x

αi)
1− x2αi

(1− si) (29)

= −u−1
i + ui(1 + si)

(1− (uiu
′
i)
−1xαi)(1 + (u′i/ui)xαi)

1− x2αi
. (30)

In particular, these operators satisfy braid relations. The quadratic relations can
be seen directly from (26)–(27) and (29)–(30). The polynomial representation
specializes at ui = u′i = 1 to the A-linearization of the action of Π n (W nX) on
X. It is faithful if Π acts faithfully.

5.14. For any root α ∈ R, define a partial ordering on X by µ <α λ if λ−µ ∈ Zα
and |〈µ, α∨〉| < |〈λ, α∨〉|, or 〈µ, α∨〉 = −〈λ, α∨〉 > 0. Each root string λ + Zα is
totally ordered by <α. Explicitly,

λ <α λ+ α <α λ− α <α λ+ 2α <α λ− 2α <α · · · if 〈λ, α∨〉 = 0
λ <α λ− α <α λ+ α <α λ− 2α <α λ+ 2α <α · · · if 〈λ, α∨〉 = 1.

If B ⊆ R, define <B to be the transitive closure of the union
⋃

α∈B <α. In general
<B is not a partial order; we may have λ <B λ.

Proposition 5.15. Let w ∈ W , B = R+ ∩ w−1(−R+). In the polynomial repre-
sentation, we have

Tw(xλ) = uρB(λ)xw(λ) +
∑

µ <w(B) w(λ)

aµx
µ,

where aµ ∈ A and uρB(λ) =
∏

α∈B u
σ(−〈λ,α∨〉)
α , σ(k) = ±1 as k ≥ 0 or k < 0.

Proof. The case w = si follows from formulas (25), (28), and the general case by
induction on l(w), using the fact that if w = siv > v and B′ = R+ ∩ v−1(−R+),
then B = B′ ∪ {v−1(αi)}.
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6. Macdonald polynomials

6.1. Let
(
X̃, (αi), (α∨i )

)
be a non-degenerate reduced affine root system (§3). As

always, we take i = 0 to be an affine node, denote the Weyl group, roots, etc.
by W , R, R+, Q, Q+, and let W0, R0, Q0, etc. denote the same for the finite
root system with simple roots α1, . . . , αn. We also allow non-reduced affine root
systems, regarded as extensions (§2.12) of a reduced affine root system X̃, with a
larger set of roots R. In the non-reduced case, we do not give the extra simple
roots their own symbols, but designate them simply as 2αi.

Let δ be the nullroot, and assume that the dual of X̃ is degenerate, i.e., δ∨ = 0.
Possibly after adjoining a fractional multiple of δ, we can always assume that
X̃ = X ⊕ Zδ/m, where Q0 ⊆ X. Fix such a decomposition.

To each i such that 2αi 6∈ R, we associate a parameter ui and put ti = u2
i . To

each i such that 2αi ∈ R we associate two parameters ui, u′i and put ti = uiu
′
i,

t′i = ui/u
′
i. We require that simple roots in the same W -orbit have the same

parameters, and put tα = tαi
, t′α = t′αi

if α ∈ W (αi). We denote by Q(t) the
field of rational functions in the parameters. The group algebra Q(t)X̃ is the ring
of Laurent polynomials Q(t)[x±ε1 , . . . , x±εN ], where {ε1, . . . , εN} is a basis of X̃.
As in §4, we let q = xδ. Then Q(t)X̃ = Q(t)[q±1/m]X, and we identify it with a
subring of Q(q, t)X.

As in §3.7, let W = Q′
0 o W0, where Q′

0 = Q∨
0 if X̃ is of untwisted type or

B̃Cn, and Q′
0 = Q0 otherwise. In either case, Q′

0 acts on Q(q, t)X by the formula

yµ(xλ) = q−(λ,µ)xλ, (31)

in terms of the W0-invariant pairing (Q0, Q
′
0) → Z in §4.4 (see also §4.6).

6.2. Let Q(q, t)Xbdenote the Q(q, t)-vector space of possibly infinite formal linear
combinations f =

∑
λ∈X aλx

λ. The space Q(q, t)Xb is a Q(q, t)X-module—i.e., it
makes sense to multiply f ∈ Q(q, t)Xb by p ∈ Q(q, t)X. We regard Q(q, t)X as a
submodule of Q(q, t)Xb. Write

[xλ]f = aλ

for the coefficient of xλ in f . Let · denote the involution on Q(q, t) and Q(q, t)X
such that

ui = u−1
i , u′i = u′−1

i , tα = t−1
α , t′α = t′−1

α , q = q−1, xλ = x−λ.

It extends to Q(q, t)Xb by the rule
∑

λ aλxλ =
∑

λ aλx
−λ. The following theorem

is due to Cherednik.

Theorem 6.3. There is a unique element ∆0 = ∆0 ∈ Q(q, t)Q0
b⊆ Q(q, t)Xb with

constant term [1]∆0 = 1, such that for each Coxeter generator si of W ,

si(∆0) =
1− tix

αi

ti − xαi
∆0, or si(∆0) =

(1− tix
αi)(1 + t′ix

αi)
(ti − xαi)(t′i + xαi)

∆0, (32)

where the second formula applies if 2αi ∈ R.
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Proof. Define a formal series ∆ ∈ Q[[q, t]]Q0
b by

∆ =
∏

α∈R+
2α6∈R, α6∈2R

1− xα

1− tαxα

∏
α∈R+
2α∈R

1− x2α

(1− tαxα)(1 + t′αx
α)
.

The coefficients [xλ]∆ ∈ Q[[q, t]] are not rational functions. Define ∆0 = ∆/([1]∆).
Since si leaves the set R+\{αi, 2αi} invariant, it follows that ∆ and ∆0 satisfy (32).
By construction, ∆0 has constant term 1. These conditions can be expressed as a
system of linear equations over Q(q, t) in the coefficients [xλ]∆0, which therefore
have a solution ∆′

0 with coefficients in Q(q, t).
Now, ∆′

0/∆0 is W -invariant. For 0 6= λ ∈ Q0, choose µ ∈ Q′
0 such that

(λ, µ) 6= 0. Then (31) implies that [xλ](∆′
0/∆0) = 0, i.e., ∆′

0/∆0 is a constant.
Hence ∆′

0 = ∆0, since they both have constant term 1. This shows that ∆0 has
coefficients in Q(q, t) and is unique. One checks that (32) is · -invariant, which
implies ∆0 = ∆0 by uniqueness.

The Macdonald constant term identity [16, (5.8.20)] provides an explicit infinite
product expansion for [1]∆, but it is not practicable to compute the coefficients of
∆0 directly from the formula ∆0 = ∆/([1]∆). A better procedure is to equate the
coefficients of yφ′(∆0) = s0sφ′(∆0), as given by (31) on the one hand, and by (32)
on the other. This leads to a recurrence which determines the coefficients.

Definition 6.4. Cherednik’s inner product on Q(q, t)X is defined by the formula

〈f, g〉0 = [1](f g∆0).

It is linear in f and · -hermitian by Theorem 6.3, i.e., 〈g, f〉0 = 〈f, g〉0.

Lemma 6.5. Let B = (R0)+. Under the identification of X with the set W ′
e/W0

of minimal left coset representatives in W ′
e = W0 nX, the ordering <B defined in

§5.14 coincides with the Bruhat order < in W ′
e.

Proof. Let wλ be minimal in xλW0. If sβwλ < wλ for a reflection sβ ∈ W ′
a, then

clearly wsβ(λ) < wλ. The Bruhat order on W ′
e/W0 is the transitive closure of these

relations. In the alcove picture (§3.10), sβ belongs to a root β = α∨ + kδ′ of the
affine root system X∨⊕Zδ′, where we can assume that α ∈ (R0)+. The condition
sβwλ < wλ means that hβ separates Λ∨0 + λ from the dominant alcove A0. This
is equivalent to sβ(λ) <α λ, and <B is by definition the transitive closure of these
relations.

We fix the partial ordering <B on X, with B = (R0)+, and denote it by <.

Theorem 6.6. There is a unique basis {Eλ : λ ∈ X} of Q(q, t)X satisfying the
orthogonality and triangularity conditions

(i) 〈Eλ, Eµ〉0 = 0 for λ 6= µ.

(ii) Eλ = xλ +
∑
µ<λ

cλµx
µ, cλµ ∈ Q(q, t). (33)
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The Eλ are the (non-symmetric) Macdonald polynomials. Let us review how
their existence and other properties are established using Cherednik algebras.

6.7. If X̃ is of untwisted or dual untwisted type, choose Y and (X,Y ) → Z/m as
in §4.4. One can always take Y = Q′

0, but other choices may be more convenient—
for instance, in type An−1, it is handy to let X = Y = Zn be the weight lattice of
GLn (Example 2.5).

Non-reduced and mixed types are handled as follows. If 2αi ∈ R, the special-
ization u′i = ui, hence t′i = 1, collapses ∆0 and 〈· , ·〉0 to their counterparts for
the root system with 2αi omitted. Similarly, specializing u′i = 1 omits αi. The
restriction of < to cosets of the (possibly smaller) root lattice Q0 in the resulting
root system does not change. It follows that if Macdonald polynomials Eλ exist
for the original root system, then they specialize at u′i = 1 (resp. u′i = ui) to Eλ

for the root system with αi (resp. 2αi) omitted. To be fully correct, we must also
show that the coefficients of Eλ do not have poles at these specializations. This
will follow from Corollary 6.15.

Every affine root system X̃ of mixed or non-reduced type embeds as above
(perhaps after adjoining δ/2) into a root system of one of two maximally non-
reduced types: (a) X̃ of type C̃∨

n with 2α0, 2αn adjoined (indexing the simple
roots as in (23)), or (b) X̃ of type B̃n, with 2αn adjoined. For these types, choose
Y and (· , ·) as for X̃ of reduced type C̃∨

n or B̃n, respectively. Specifically X, Y are
of types (Bn, Bn) in (a), or (Bn, Cn) in (b), and we have α∨ ∈ 2X̃∨ for all short
roots α. In case (a) we also require Y to satisfy α′∨ ∈ 2Ỹ ∨ for short roots α′, so
as not to force the parameters for i = 0 and i = n to coincide (Remark 5.10).

Let H = H(We, X̃) be the Cherednik algebra (Definition 5.6) attached to X,
Y , (· , ·), with ground ring A = Q(t), and parameters ui equated with those in
§6.1, setting u′i = ui in the reduced case. We identify Q(q, t)X with the underlying
space of the polynomial representation (§5.13) of H, after extension of scalars from
Q(t)[q±1] to Q(q, t). Note that in formulas (25)–(30) for i = 0, we have xα0 = qx−θ,
and s0(xλ) = q〈λ,θ∨〉sθ(xλ), where δ = α0 + θ.

Proposition 6.8. The operators Ti (§5.13) are unitary with respect to 〈· , ·〉0.

Proof. For any operator T , let T ∗ denote its adjoint, 〈T ∗f, g〉0 = 〈f, Tg〉0. We are
to show that T ∗i = T−1

i = Ti−ui +u−1
i , or equivalently, since u∗i = ui = u−1

i , that

(Ti − ui)∗ = (Ti − ui).

From (32), we deduce that

s∗i =
1− tix

αi

ti − xαi
si = si

ti − xαi

1− tixαi

if 2αi 6∈ R, or

s∗i =
(1− tix

αi)(1 + t′ix
αi)

(ti − xαi)(t′i + xαi)
si = si

(ti − xαi)(t′i + xαi)
(1− tixαi)(1 + t′ix

αi)
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if 2αi ∈ R. The fractions appearing in these expressions are self-adjoint, since s∗i si

and sis
∗
i are self-adjoint. The result now follows easily from (26)–(27) in the first

case (where ti = u2
i ), and (29)–(30) in the second (where ti = uiu

′
i, t

′
i = ui/u

′
i).

Proposition 6.9. For i 6= 0, introduce formal “logarithms” ki, kα = ki for α ∈
W0(αi), with the convention that qki = ui. Set

ρ∨ =
∑

α∈(R0)+

kαα
∨, ρ′∨ =

∑
α∈(R0)+

kαα
′∨,

where α′ ∈ (R′0)+ is the positive root such that sα′ = sα. Then the Cherednik
operators yµ ∈ H, acting on Q(q, t)X, satisfy

yµ(xλ) = q−(λ,µ)+〈µ,wλ(ρ′∨)〉xλ +
∑
µ<λ

bλµx
µ, bλµ ∈ Q(q, t), (34)

where wλ is the minimal representative of xλW0 in W ′
e.

Proof. It suffices to take µ ∈ Y+ dominant, so yµ = Tyµ . Bear in mind that X̃
is now a reduced affine root system of untwisted or dual untwisted type (§6.7),
not the root system we started with in §6.1. The affine roots are α + dZδ for
α ∈ R0, where d = (α, α′)/2, both for untwisted types and their duals. We have
(α, µ) = d〈µ, α′∨〉 for all µ ∈ Y .

If β = α + kδ is a root, then yµ(β) = α + (k − (α, µ))δ, and the condition
β ∈ B = R+ ∩ y−µ(−R+) holds if and only if 0 ≤ k < (α, µ) and α ∈ (R0)+. It
follows that for any α ∈ (R0)+, the number of roots of the form α + kδ ∈ B is
equal to 〈µ, α′∨〉. We also have xyµ(λ) = q−(λ,µ)xλ by (31). The form of (34) now
follows from Proposition 5.15, with leading coefficient given by

q−(λ,µ)
∏

α∈(R0)+

u〈µ,α′∨〉σ(−〈λ,α∨〉)
α .

This is equal to q−(λ,µ)+〈µ,wλ(ρ′∨)〉 because wλ(ρ′∨) =
∑

α∈(R0)+
±kαα

′∨, with a
minus sign if α∨ ∈ wλ(−(R∨0 )+), or equivalently, if 〈λ, α∨〉 > 0 (see the next
remark).

Note that ρ∨, ρ′∨ are characterized by 〈αi, ρ
∨〉 = 〈α′i, ρ′∨〉 = 2ki.

Remark 6.10. The action of W ′
e = W0 n X on Y ∨ factors through W0. Hence,

wλ(ρ′∨) in (34) depends only on the image of wλ in W0, which is the minimal
element vλ such that v−1

λ (λ) ∈ −X+. A better way to write (34) is as follows.
Define Λ∨0 ∈ Ỹ ∨

Q by Λ∨0 (Y ) = 0, 〈δ′,Λ∨0 〉 = 1. Let η : X → Y ∨
Q be the homo-

morphism induced by the pairing (X,Y ) → Q, that is, (λ, µ) = 〈µ, η(λ)〉. Then
wλ(Λ∨0 ) = Λ∨0 + η(λ), and (34) takes the form

yµ(xλ) = q−〈µ,wλ(Λ∨0 −ρ′∨)〉xλ +
∑
µ<λ

bλµx
µ, bλµ ∈ Q(q, t), (35)

valid for all µ ∈ Ỹ .
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Corollary 6.11. Theorem 6.6 holds with Eλ ∈ (Q(q, t)Q0)xλ determined uniquely
as the joint eigenfunction with eigenvalue q−〈µ,wλ(Λ∨0 −ρ′∨)〉 of the operators yµ,
normalized so that [xλ]Eλ = 1.

Proof. The yµ act on (Q(q, t)Q0)xλ as commuting, lower-triangular operators with-
out repeated joint eigenvalues. Since the yµ are unitary by Proposition 6.8, their
joint eigenfunctions Eλ are orthogonal.

6.12. Relation (19) can be written φix
λ = xsi(λ)φi, where φi = Ti−(ui−u−1

i )/(1−
xαi). By Corollary 5.12, we also have ψiy

µ = ysi(µ)ψi for i = 0′, 1, . . . , n, where
ψi = T−1

i − (u−1
i − ui)/(1 − yα′i) = Ti − (ui − u−1

i )/(1 − y−α′i), and similarly for
(21). It is advantageous to use uiψi instead here. To this end, set

T̃i = uiTi (i = 1, . . . , n);

T̃0′ = u0′T0′ = u0′T
−1
sφ
x−φ = u′jT

−1
v T−1

j x−αjTv = tφT̃
−1
v T̃−1

j x−αj T̃v,

where sφ = v−1sjv is a reduced factorization (Lemma 4.20). These operators de-
pend only on the parameters ti, t′i. The intertwining relations uiψiy

µ = ysi(µ)uiψi,
along with π′yµ = yπ′(µ)π′ for π ∈ Π′ imply the following proposition.

Proposition 6.13. If Eλ is a joint eigenfunction of the operators yµ, µ ∈ Ỹ with
eigenvalue q〈µ,Λ〉, then Ψi(Eλ) is a joint eigenfunction with eigenvalue q〈µ,si(Λ)〉,
where i = 0′, 1, . . . , n, and

Ψi = T̃i +
1− ti

1− q−〈α
′
i,Λ〉

, or Ψi = T̃i +
1− tit

′
i + (t′i − ti)q−〈α

′
i,Λ〉

1− q−2〈α′i,Λ〉
,

the second formula applying in case α′∨i ∈ 2Ỹ ∨. Similarly, π′(Eλ) is a joint eigen-
function with eigenvalue q〈µ,π′(Λ)〉, for any π′ ∈ Π′.

Corollary 6.14. For i 6= 0, if si(λ) = λ, then siEλ = Eλ.

Proof. Proposition 6.13 implies that TiEλ is a scalar multiple of Eλ, and from the
leading coefficient we deduce TiEλ = uiEλ, which is equivalent to siEλ = Eλ.

Corollary 6.15. The Macdonald polynomials satisfy the recurrence

Evπ′ (λ)+λπ′
= q−〈λ(π′−1),wλ(ρ∨)〉xλπ′Tvπ′ (Eλ), π′ = xλπ′ vπ′ ∈ Π′, (36)

Esi(λ) =
(
T̃i +

1− ti

1− q(λ,α′i)−〈α′i,wλ(ρ′∨)〉

)
Eλ, 〈λ, α∨i 〉 > 0, i 6= 0′, t′i = 1, (37)

Esφ(λ)+φ = t′φq
−〈φ,wλ(ρ∨)〉

(
T̃0′ +

1− t0′

1− q1−(λ,θ′)+〈θ′,wλ(ρ′∨)〉

)
Eλ,

〈λ, φ∨〉 < 1, t′0′ = 1.
(38)

If t′i 6= 1, (37) becomes instead

Esi(λ) =

(
T̃i +

1− tit
′
i + (t′i − ti)q(λ,α′i)−〈α

′
i,wλ(ρ′∨)〉

1− q2((λ,α′i)−〈α′i,wλ(ρ′∨)〉)

)
Eλ, (39)

with a corresponding modification to (38) if t′0′ 6= 1.
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The base of the recurrence is Eλ = xλ for λ minuscule, i.e., 〈λ, α∨i 〉 ≥ 0 for
i 6= 0 and 〈λ, φ∨〉 ≤ 1. With this base, (36) is not essential to the recurrence, but
it is often useful nevertheless.

To prove Corollary 6.15, first observe that the map X → ỸQ, λ 7→ Λ∨0 + λ is
equivariant with respect to the action of W ′

e on Ỹ and on X = W ′
e/W0. Then

Proposition 6.13 and Corollary 6.11 imply that Ψi(Eλ) (resp. π′(Eλ)) is a scalar
multiple of Esi(λ) (resp. Eπ′(λ) = Evπ′ (λ)+λπ′

).
The action of Π′ on X = W ′

e/W0 preserves the Bruhat order. Assuming by
induction that (36) holds for ν < λ, we conclude that π′ = xλπ′Tvπ′ carries
Q(q, t){xν : ν < λ} into Q(q, t){xν : ν < vπ′(λ) + λπ′}. Hence the coefficient
of xvπ′ (λ) in Tvπ′ (x

λ) determines the scalar factor in (36). For 〈λ, α∨i 〉 > 0 (resp.
〈λ, φ∨〉 < 1), we have siwλ > wλ (resp. s0′wλ > wλ). We may assume by induc-
tion that Ti (resp. T0′) leaves invariant the space Q(q, t){xν , xsi(ν) : ν < λ}. For
i 6= 0′ and si(λ) > λ, we have [xsi(λ)]T̃i(xλ) = 1, giving (37), and the coefficient of
xsφ(λ)+φ in T̃0′(xλ) determines the scalar factor in (38). The next lemma supplies
the missing scalar factors.

Lemma 6.16. (i) We have [xvπ′ (λ)]Tvπ′ (x
λ) = q〈λ(π′−1),wλ(ρ∨)〉 for any π′ ∈ Π′.

(ii) For 〈λ, φ∨〉 < 1, we have [xsφ(λ)+φ]T̃0′(xλ) = t′−1
φ q〈φ,wλ(ρ∨)〉.

Proof. (i) Let B = (R0)+ ∩ v−1
π′ (−(R0)+). We claim that for any α ∈ (R0)+,

〈λ(π′−1), α
∨〉 = 1 if α ∈ B, 0 otherwise. Then Proposition 5.15 gives

[xvπ′ (λ)]Tvπ′ (x
λ) =

∏
α∈(R0)+

u
〈λ(π′−1),α

∨〉σ(−〈λ,α∨〉)
α = q〈λ(π′−1),wλ(ρ∨)〉

by the argument in the proof of Proposition 6.9.
As to the claim, if vπ′ = 1, then B = ∅ and 〈λ(π′−1), α

∨〉 = 0 for all α.
Otherwise, λ(π′−1) = −v−1

π′ (λπ′), and 〈λ(π′−1), α
∨〉 = −〈λπ′ , vπ′(α∨)〉 ∈ {0, 1} for

all α ∈ (R0)+, since λ(π′−1) is minuscule. Now, vπ′(α∨j ) = −φ∨, where π′−1(α′0) =
α′j , and vπ′(α∨i ) is a simple coroot for i 6= j. Since vπ′ 6= 1, we have 〈λπ′ , φ

∨〉 = 1,
and it follows that 〈λ(π′−1), α

∨
i 〉 = δij . Given α ∈ (R0)+, if 〈λ(π′−1), α

∨〉 = 1, then
vπ′(α) ∈ −(R0)+ since λπ′ ∈ X+. Conversely, if 〈λ(π′−1), α

∨〉 = 0, the coefficient
of α∨j in α∨ must be zero, hence vπ′(α) ∈ (R0)+.

(ii) Let B = (R0)+ ∩ sφ(−(R0)+). The operator sφTsφ
is lower-triangular by

Proposition 5.15, hence so is T−1
sφ
sφ, and [xsφ(λ)+φ]T−1

sφ
(xλ−φ) is inverse to

[xλ−φ]Tsφ
(xsφ(λ)+φ) =

∏
α∈B

u
σ(−〈sφ(λ)+φ , α∨〉)
α =

∏
α∈B

uσ(〈λ−φ , α∨〉)
α ,

using sφ(B) = −B in the last equation. Now, φ is short and dominant, hence
〈φ, α∨〉 ∈ {0, 1} for α ∈ (R0)+\{φ}. Moreover, sφ(α∨) = α∨−〈φ, α∨〉φ∨, and since
φ∨ is the highest coroot, this implies that 〈φ, α∨〉 > 0 if and only if sφ(α) ∈ −(R0)+.
Thus for α ∈ (R0)+ \ {φ}, we have 〈φ, α∨〉 = 1 if α ∈ B, 0 otherwise. Since
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〈λ, φ∨〉 ≤ 0, it follows that

[xsφ(λ)+φ]T̃0′(xλ) = u′φ[xsφ(λ)+φ]T−1
sφ

(xλ−φ) = u′φuφ

∏
α∈B\{φ}

u−σ(〈λ,α∨〉−1)
α

= (u′φ/uφ)
∏

α∈(R0)+

u〈φ,α∨〉σ(−〈λ,α∨〉)
α = t′−1

φ q〈φ,wλ(ρ∨)〉.

6.17. Suppose X̃ is dual to an untwisted type. Then X, Y are of the same type,
φ = θ, φ′ = θ′, sφ = sφ′ , and inH we have the identities T0′ = xφT−1

0 yφ′+u0′−u−1
0′

and π′ = xλπ′πyλ(π−1) for π′ ∈ Π′, π ∈ Π such that vπ′ = vπ. Using these identities,
(36) and (39) for i = 0′ become

Evπ′ (λ)+λπ′
= q−(λ,λ(π−1))xλπ′π(Eλ), π′ ∈ Π′, π ∈ Π, vπ = vπ′

Esθ(λ)+θ = q1−(λ,θ′)

(
uθx

−α0T−1
0 +

(uθ/u
′
0 − uθu

′
0) + (uθ/u0′ − uθu0′)qr

1− q2r

)
Eλ,

where r = 1− (λ, θ′) + 〈θ′, wλ(ρ′∨)〉. Note that the second formula simplifies to an
analog of (37) if u0′ = u′0.

6.18. Although our chief concern is with non-symmetric Macdonald polynomials,
let us say a little about the symmetric version. Given λ ∈ X+, let Vλ = Q(q, t){Eν :
ν ∈W0(λ)}. By Corollaries 6.14, 6.15, Vλ is an H(W0)-submodule of Q(q, t)X. It
follows that there is a unique W0-invariant element Pλ ∈ Vλ such that [xλ]Pλ = 1.
The Pλ are symmetric Macdonald polynomials. They are orthogonal and are joint
eigenfunctions of all W0-invariant operators f(y) ∈ (Q(q, t)Y )W0 . The coefficients
of Pλ in terms of the Eν can be determined explicitly using Corollary 6.15.

The Pλ are also orthogonal with respect to Macdonald’s inner product, which is
a symmetrization of 〈· , ·〉0. They were originally defined by Macdonald [14, 15] in
terms of this orthogonality. When ti = q(αi,α

′
i)/2, they specialize to the irreducible

characters of the algebraic group G with weight lattice X and root system Q0.
Other specializations yield Hall-Littlewood and Jack polynomials, and spherical
functions for classical and p-adic symmetric spaces.

For GLn, the Pλ are symmetric polynomials in x1, . . . , xn, with coefficients
in Q(q, t). As n → ∞, they converge to symmetric functions Pλ(x; q, t) in in-
finitely many variables xi. A transformed and renormalized variant H̃λ(x; q, t) of
Pλ(x; q, t) was the subject of Macdonald’s positivity conjecture, proved in [6] by
identifying H̃λ(x; q, t) with the character of the fiber of a certain vector bundle on
the Hilbert scheme H of 0-dimensional subschemes in C2, at a distinguished point
of H corresponding to λ.

6.19. Macdonald polynomials for the maximally non-reduced extensions of affine
root systems of type C̃∨

n are Koornwinder polynomials. Their coefficients belong
to Q(t0, t′0, tn, t

′
n, t1, q). Specializing the five t parameters in various ways yields

most Macdonald polynomials for the infinite families of affine root systems.
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7. A combinatorial formula

7.1. From Corollary 6.15 and the definition of the operators T̃i it is clear that for
a reduced affine root system, Eλ can be expressed as a sum of terms of the form

±xµqrts
∏
j

1− tij

1− qaj tbj
,

where ts, tbj stand for monomials in the parameters ti. It may be conjectured, at
least for equal parameters ti = t, that Eλ is a positive sum of such terms. With
Haglund and Loehr [5], we proved this for type Ãn−1 by means of a combinatorial
formula, which we will now present (referring the reader to [5] for the proof). Some
of the combinatorial structure is the same as in Knop and Sahi’s earlier formula
[10] for non-symmetric Jack polynomials, but the lift to Macdonald polynomials
requires more ingredients.

7.2. Take X = Y = Zn the root system of GLn, as in Example 2.5. The pairing
(X,Y ) → Z (§4.4) is the standard inner product on Zn. We have φ = θ = φ′ =
θ′ = e1 − en, and Π = Π′ is cyclic, with generator π′ acting on X = W ′

e/W0 by

π′(λ) = (λn + 1, λ1, . . . , λn−1).

To π′ corresponds an element π ∈ Π such that vπ = vπ′ , which acts on Q(q, t)X̃
by

π(xλ) = q−λnx(λn,λ1,...,λn−1), or πf(x1, . . . , xn) = f(x2, . . . , xn, x1/q).

We have λπ′ = λπ = e1, λ(π′−1) = λ(π−1) = −en.
The simple roots are all W -conjugate, so there is a single parameter ti = t for

all i. For i 6= 0, the operators T̃i (§5.13, 6.12) are given by

T̃i = tsi −
1− t

1− xi/xi+1
(1− si), (40)

where si is the transposition xi ↔ xi+1. The analogous formula for i = 0 has
qxn/x1 in place of xi/xi+1, and s0 acts as x1 7→ qxn, xn 7→ x1/q.

Let λ be the rearrangement of (1, 2, . . . , n) such that λi > λj if and only if
λi > λj , for i < j. Then wλ(ρ∨) = −kλ, modulo a constant vector. From §6.17
and (37), we obtain Knop’s recurrence, which determines Eλ for all λ ∈ X:

E(0,...,0) = 1, (41)

E(λn+1,λ1,...,λn−1) = qλnx1Eλ(x2, . . . , xn, x1/q), (42)

Esi(λ) =
(
T̃i +

1− t

1− qλi−λi+1 tλi−λi+1

)
Eλ, λi > λi+1, i 6= 0. (43)

7.3. By (42), we have Eλ+(r,r,...,r) = (x1 · · ·xn)rEλ. Without loss of generality,
therefore, we restrict attention to compositions λ such that λi ≥ 0 for all i. The
column diagram of λ is

dg(λ) = {(i, j) ∈ N2 : 1 ≤ i ≤ n, 1 ≤ j ≤ λi},
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pictured as an array of n columns of boxes, with λi boxes in column i. The
augmented diagram of λ,

d̂g(λ) = dg(λ) ∪ {(i, 0) : 1 ≤ i ≤ n},

is formed by adjoining an extra box in row 0 at the bottom of each column. The
arm and leg of a box u = (i, j) ∈ dg(λ) are defined by

l(u) = µi − j,

a(u) = |{(i′, j) ∈ dg(λ) : i′ < i, λi′ ≤ λi} ∪ {(i′, j − 1) ∈ d̂g(λ) : i′ > i, λi′ < λi}|.

In the example below, the box marked l contributes to the leg of u, and those
marked a contribute to the arm, giving l(u) = 1, a(u) = 4.

λ = (2, 0, 1, 3, 2, 0, 3, 1, 2), d̂g(λ) = l
a a u

a a

With these definitions, if λi > λi+1 and u = (i, µi+1 + 1), equation (43) can be
written

Esi(λ) =
(
T̃i +

1− t

1− ql(u)+1ta(u)

)
Eλ.

A filling of λ is a function σ : dg(λ) → [n] = {1, . . . , n}. Its associated augmented
filling is the extension σ̂ : d̂g(λ) → [n] of σ such that σ̂((j, 0)) = j for j = 1, . . . , n.
Distinct boxes u = (i, j), v = (i′, j′) ∈ d̂g(λ) attack each other if either

(a) they are in the same row, j = j′, or
(b) they are in consecutive rows, and the lower box is to the right of the upper

box: j′ = j − 1 and i < i′ or vice versa.
A filling σ is non-attacking if σ̂(u) 6= σ̂(v) whenever u and v attack each other
(non-attacking fillings are called admissible in [10]).

7.4. Let d(u) = (i, j − 1) denote the box directly below a box u = (i, j). A box
u ∈ dg(λ) is a descent of a filling σ if σ̂(u) > σ̂(d(u)). Define

Des(σ) = {descents of σ}, maj(σ) =
∑

u∈Des(σ)

(l(u) + 1).

The reading order is the total ordering < of the boxes in d̂g(λ) row by row,
from top to bottom, and from right to left within each row. A triple consists of
three boxes u < v < w = d(u) in d̂g(λ), as shown:

u
w v ,

v u
w ,

Type I Type II

with the proviso that the column containing u, w is strictly taller than the column
containing v in Type I, and weakly taller in Type II, i.e., v contributes to the
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arm of u. A co-inversion triple of σ is a triple such that σ(u) < σ(v) < σ(w) or
σ(v) < σ(w) < σ(u) or σ(w) < σ(u) < σ(v). Define

coinv(σ) = |{co-inversion triples of σ}|.

Example 7.5. The figure below shows the augmentation σ̂ of a non-attacking
filling σ of λ = (2, 1, 3, 0, 0, 2).

σ̂ =
2

6© 4© 5
1 2 3 5
1 2 3 4 5 6

.

The circled boxes are Des(σ), giving maj(σ) = 3. Row 0 is the bottom row. There
are two co-inversion triples, one of Type I formed by the 3 and the 5 in row 1 with
the 4 in row 2, and one of Type II formed by the 6 and the 4 in row 2 with the 3
in row 1, giving coinv(σ) = 2.

Theorem 7.6. The Macdonald polynomials Eλ for GLn are given by

Eλ =
∑

σ : λ→[n]
non-attacking

xσqmaj(σ)tcoinv(σ)
∏

u∈dg(λ)bσ(u) 6=bσ(d(u))

1− t

1− ql(u)+1ta(u)+1
, (44)

where xσ =
∏

u∈dg(λ) xσ(u).

7.7. Earlier, in [4], we gave a combinatorial formula for the symmetric Macdonald
polynomials Pλ for GLn, which had originally been conjectured by Haglund [3].
The combinatorial statistics coinv(σ) and maj(σ) first appeared in the formula
for the symmetric case, which is expressed similarly as a sum over fillings of a
diagram. Our work in the symmetric case relies heavily on the special theory of
GLn Macdonald polynomials in the n → ∞ stable limit. It seems likely that the
non-symmetric formula will provide better clues as to what we might expect for
other root systems.

7.8. The proof of Theorem 7.6 is a direct verification that (44) satisfies Knop’s
recurrence (41)–(43). It is not difficult to check (42), and (41) is trivial. The hard
part is to verify (43). In fact, we were only able to do it in the special case that
λi+1 = 0, which fortunately is enough. The difficulty lies in applying the operator
T̃i in (40) to (44), which is intractable if attempted head-on. To get around this,
we recast (43) as asserting that certain expressions related to (44) are si-invariant.
This is proved with the help of a symmetry lemma which originated in the theory
of LLT polynomials [11, 12], and was also at the heart of our work in [4]. We invite
the reader to consult [5] for more detail.
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