4.

a) \(- (1 - x^8)/(1 - x)\)
b) Geometric series: \(1/(1 - 3x)\)
c) \(x^2/(1 + 3x)\)
e) \((1 + 2x)^7\).

8.

a) \((\frac{3}{n^{1/2}})\) if \(n\) is even, 0 otherwise.

b) \(- (3)^n (\frac{3}{n})\)

g) Observe that \(\frac{x^n}{1 + x^n + x^2} = \frac{x^2}{1 - x^2} = (x - x^2) \sum_{i=0}^{\infty} x^{3n}\). Thus the coefficient \(a_n\) is 1 if \(n\) is congruent to 1 (mod 3), -1 if \(n\) is congruent to 2 (mod 3) and 0 otherwise.

30.

a) \(2G(x)\)
b) \(xG(x)\)
c) \(x^2(G(x) - G(0) - G'(0)x) = x^2(G(x) - a_0 G(x) - a_1 x G(x))\)
d) Answer for (c) divided by \(x^4\).
e) \(G'(x)\)
f) \((G(x)^2)\)

36. Let \(G(x) = \sum_{i=0}^{\infty} a_k x^k\). Then,

\[G(x) - 4 - 12x = \sum_{i=2}^{\infty} a_k x^k = \sum_{i=2}^{\infty} (a_{k-1} + 2a_{k-2} + 2^k)x^k = xG(x) + 2x^2G(x) + 1/(1 - 2x). \]

Thus, \(G(x) = (4 + 12x + 1/(1 - 2x))/(1 - x - 2x^2)\). One can then find an explicit formula for the coefficients (omitted).

40. Observe first that \(2^n n! (1)(3)(5)\ldots(2n - 1) = (2n)!\), since the \(2^n n!\) is exactly the product of the even terms \((2)(4)\ldots(2n)\). Thus,

\[\frac{(2n)!}{(-4)^n} = \frac{(2n)!}{(-4)^n n!} = \frac{2^n (1)(3)(5)\ldots(2n - 1)}{n! (-4)^n} = \frac{(-1/2)(-3/2)(-5/2)\ldots(-2n - 1)/2}{n!} = \left(-\frac{1/2}{n}\right) \]

Then,

\[(1 - 4x)^{-1/2} = \sum_{n=0}^{\infty} \left(-\frac{1/2}{n}\right)(-4x)^n. \]

The result is now obvious from the first part.

50. Let \(S\) denote the set of all byte strings of length \(n\). Let \(c_0, c_1 : S \rightarrow \{0, 1\}\) denote the functions whose output given a string \(x\) is number of 0’s in the string mod 2, and 1’s in the string mod 2, respectively. Let \(A_n, B_n, C_n, D_n\) denote the set of strings with \(c_0 = a, c_1 = b\) for \(ab = 00, 01, 10, 11\), respectively. Then \(a_n = |A_n|, b_n = |B_n|, c_n = |C_n|, d_n = |D_n|\). Now, clearly, \(A_n \cup B_n \cup C_n \cup D_n = S\), and the sets \(A_n, B_n, C_n, D_n\) are clearly disjoint (elements in two different sets have different \((c_0, c_1)\) values), so \(4^n = |S| = a_n + b_n + c_n + d_n\).

For the recurrence relations, say the first one, the strings in \(A_{n+1}\). We can partition \(A_{n+1}\) into the strings in \(A_{n+1}\) with last byte a 0, 1, 2, 3, separately. If the last byte is a 2 or 3, the first \(n\) bytes can be any string with an even number of 0’s and an even number of 1’s, hence there are \(a_n\) many of each. If the last byte is a 0, the first \(n\) bytes are a string with an even number of 1’s and an odd number of 0’s, that is a string in \(C_n\). Similarly, there are \(b_n\) many strings with a last byte equal to 0. Thus, \(a_{n+1} = b_n + c_n + 2a_n\). The same thing
can be done for b_{n+1}, c_{n+1}, and we get the desired relations by using the formula $d_n = 4^n - a_n - b_n - c_n$ to get rid of any d_n terms which appear.

We will omit the routine calculation of what the small values of the sequence are.

Now, let $A(x) = \sum_{i=0}^{\infty} a_n x^n$, similarly for $B(x), C(x)$. [NOTE: $a_0 = 1, b_0 = 0, c_0 = 0, d_0 = 0$, since THE empty string has no zeros and no ones]. Thus,

$$A(x) = 1 + x \sum_{i=0}^{\infty} a_{n+1} x^n = 1 + x \sum_{i=0}^{\infty} (2a_n + c_n + b_n) x^n = 1 + 2x A(x) + x C(x) + x B(x).$$

So, $(1 - 2x)A(x) = 1 + x B(x) + x C(x)$. Similarly, $B(x) = x B(x) - x C(x) + 1/(1 - 4x)$, $C(x) = x C(x) - x B(x) + x/(1 - 4x)$. Using these last two equations, $(1 - x) B(x) + x C(x) = x/(1 - 4x) = x B(x) + (1 - x) C(x)$.

Equating the far left and right terms, we find that $(1 - 2x) B(x) = (1 - 2x) C(x)$. So, if we restrict to $|x| < 1/2$, $B(x) = C(x)$. Plugging this back in to either of the last two equations, we find that $B(x) = x/(1 - 4x)$. Finally, $A(x) = (1 + x^2)/(1 - 4x)(1 - x) = 1/(1 - 2x) + x^2/(1 - 2x) - 2/(1 - 4x)$. We use a partial fractions decomposition on the last term, to find $A(x) = 1/(1 - 2x) + 2x^2/(1 - 2x) + 2/(1 - 4x))$. The explicit formula for a_n, b_n, c_n can be found now routinely. This is omitted.

4. 1250000 + 650000 = 1450000.

10. Let S denote the set of positive integers not exceeding 100, that are not divisible by 5, and T those that are not divisible by 7. We are looking for $|S \cap T|$. Using Demorgan’s Laws and Inclusion-Exclusion,

$$|S \cap T| = |(S^C \cup T^C)| = 100 - |S^C \cup T^C| = 100 - |S^C| - |T^C| + |S^C \cap T^C| = 100 - 20 - 14 + 2 = 68.$$

14. Let X, Y, Z denote the set of permutations of the English alphabet which contain ”fish”, ”rat”, and ”bird”, respectively. We seek $|X^C \cap Y^C \cap Z^C|$. Once again, using Demorgan’s Laws and Inclusion-Exclusion,

$$|X^C \cap Y^C \cap Z^C| = |(X \cup Y \cup Z)^C| = 26! - |X| - |Y| - |Z| + |X \cap Y| + |X \cap Z| + |Y \cap Z| - |X \cap Y \cap Z|.$$

The number of permutations which contain ”fish” is just 23! (treat ”fish” as a single letter), so $|X| = 23!$. Similarly, $|Y| = 24!, |Z| = 23!$. There 2! permutations which contain ”fish” and ”rat” (the letters used are all distinct), but no strings which simultaneously contain ”fish” and ”bird”, or ”rat” and ”bird”; hence all other double and triple intersections are empty. Thus, the total number is 26! - 24! - 23! - 23! + 2!.

4. Let $a_1 = 3, a_2 = 4, a_3 = 5, a_4 = 8$. Let us define a few sets:

$$S = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 + x_3 + x_4 = 17, x_i \geq 0 \text{ for all } i\}$$

$$S_i = \{(x_1, x_2, x_3, x_4) \in S \mid x_i \leq a_i\}.$$

The number we seek is $R = |S_1 \cap S_2 \cap S_3 \cap S_4|$, since this is the number of 4-tuples (x_1, x_2, x_3, x_4) whose sum is 17, and x_1 is a nonnegative integer less than or equal to 3, etc. Thus, we use inclusion exclusion (the alternate form):

$$R = |S| - \sum_i |S_i^C| + \sum_{i<j} |S_i^C \cap S_j^C| - \sum_{i<j<k} |S_i^C \cap S_j^C \cap S_k^C| + |S_1^C \cap S_2^C \cap S_3^C \cap S_4^C|.$$

Observe that $S_i^C = \{(x_1, x_2, x_3, x_4) \in S \mid x_i \geq a_i + 1\}$, so $|S_i^C|$ is the number of ways to solve $x_1 + x_2 + x_3 + x_4 = 17$ with nonnegative $x_i's$, and $x_i \geq a_i + 1$. Let $y_i = x_i - (a_i + 1)$, $y_j = x_j$ for $i \neq j$, we see that the number of such solutions is the same as the number of solutions to $y_1 + y_2 + y_3 + y_4 = 17 - (a_i + 1)$ with nonnegative integers, which is $\binom{17 - (a_i + 1) + 4 - 1}{4}$. One performs an analogous calculation for multiple intersections (which amounts to having to subtract off multiple a_i), to obtain the final answer:

$$R = \left(\begin{array}{c}
17 + 4 - 1 \\
4 - 1
\end{array}\right) - \left(\begin{array}{c}
17 - 4 + 4 - 1 \\
4 - 1
\end{array}\right) - \left(\begin{array}{c}
17 - 5 + 4 - 1 \\
4 - 1
\end{array}\right) - \left(\begin{array}{c}
17 - 9 + 4 - 1 \\
4 - 1
\end{array}\right) + \left(\begin{array}{c}
17 - 9 + 4 - 1 \\
4 - 1
\end{array}\right) + \left(\begin{array}{c}
17 - 10 + 4 - 1 \\
4 - 1
\end{array}\right) + \left(\begin{array}{c}
17 - 13 + 4 - 1 \\
4 - 1
\end{array}\right) + \left(\begin{array}{c}
17 - 11 + 4 - 1 \\
4 - 1
\end{array}\right) + \left(\begin{array}{c}
17 - 14 + 4 - 1 \\
4 - 1
\end{array}\right) + \left(\begin{array}{c}
17 - 15 + 4 - 1 \\
4 - 1
\end{array}\right).$$
\[
-\left(\frac{17 - 15 + 4 - 1}{4 - 1} \right) - \left(\frac{17 - 18 + 4 - 1}{4 - 1} \right) - \left(\frac{17 - 19 + 4 - 1}{4 - 1} \right) - \left(\frac{17 - 20 + 4 - 1}{4 - 1} \right) + \left(\frac{17 - 24 + 4 - 1}{4 - 1} \right).
\]

Note that the last 4 terms are 0.

18.

We shall show that both sides count the number of derangements of \(n \) objects (that is permutations \(\phi : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\} \); by definition the left hand side does. Now, for \(i = 2, \ldots, n \), let \(A_i \) be the set of derangements \(\phi \), with \(\phi(1) = i \). Clearly, the \(A_i \) are disjoint, and the union of the \(A_i \) is equal to the set of all derangements, since \(\phi(1) \neq 1 \), for \(\phi \) a derangement. Now, \(A_i = B_i \cup C_i \), where \(B_i \) is then those \(\phi \) with \(\phi(1) = 1 \), \(\phi(i) = 1 \), and \(C_i \) is the complement of \(B_i \) in \(A_i \). Then, \(|B_i| = D_{n-2} \), since any such \(\phi \) can be completed to a derangement of all \(n \) numbers by simply deranging the numbers other than 1 and \(i \). We claim that \(|C_i| = D_{n-1} \). To see this, we note that \(\phi \) is a map which doesn’t send 2 to 2, doesn’t send 3 to 3, \(\ldots \), doesn’t send \(i \) to 1 (since \(\phi \notin B_i \), \(\ldots \), doesn’t send \(n \) to \(n \). Viewing the object \(i \) in the domain as 1, this is just a derangement of \(n-1 \) objects, as desired. Since \(i \) was arbitrary, we conclude that \(A_i = D_{n-1} + D_{n-2} \) for all \(i \), hence,

\[
D_n = A_2 + \ldots + A_n = (n - 1)(D_{n-1} + D_{n-2}).
\]

22. First, we see that if \(x \) and \(pq \) are relatively prime, if and only if neither \(p \) nor \(q \) divide \(x \). We see this as follows. Certainly, if \(x \) and \(pq \) are relatively prime, then, \(x \) cannot be divisible by either \(p \) or \(q \) since each of them divides \(pq \). Conversely, if \(x \) and \(pq \) are not relatively prime, then there is a nonidentity divisor of \(pq \) which divides \(x \); the only divisors of \(pq \) are 1, \(p \), \(q \), \(pq \), so we see if \(p \), \(q \) or \(pq \) divides \(x \), then, either \(p \) divides \(x \) or \(q \) divides \(x \). Now, let \(R \) be the set of integers between 1 and \(pq \), \(S \) the set of integers between 1 and \(pq \) which are divisible by \(p \), \(T \) the set of integers between 1 and \(pq \) which are divisible by \(q \). We see that \(|S| = q, |T| = p \), e.g. the multiples of \(p \) between 1 and \(pq \) are \(p, 2p, \ldots, qp \). Now, the set of numbers between 1 and \(pq \) which are relatively prime to \(pq \) is exactly \(S^C \cap T^C \), where \(S^C = R \setminus S \) is the complement of \(S \) with respect to \(R \), similarly for \(T \). By Demorgan’s Laws, then inclusion exclusion,

\[
|S^C \cap T^C| = |(S \cup T)^C| = |R| - |S \cup T| = |R| - |S| - |T| + |S \cap T|.
\]

Now, \(|R| = pq \), and \(S \cap T \) is the set of integers between 1 and \(pq \) divisible by both \(p \) and \(q \), hence by \(pq \), since \(p \) and \(q \) are distinct primes, hence are relatively prime. Thus, \(S \cap T = \{pq\} \), so \(|S \cap T| = 1 \). Thus, \(\phi(pq) = pq - p - q + 1 = (p - 1)(q - 1) = \phi(p)\phi(q) \).