SOLUTION: ASSIGNMENT 5

4.1.3 Is the subset of P_2 given below a subspace? Find a basis if it is.

$$\{ p(t) : p'(1) = p(2) \}$$

(p' is the derivative).

Solution. Let $S = \{ p(t) : p'(1) = p(2) \}$. For any $p_1, p_2 \in S$, $k_1, k_2 \in \mathbb{R}$, by

$$(k_1 \cdot p_1 + k_2 \cdot p_2)'|_{t=1} = k_1 p_1'(1) + k_2 p_2'(1) = k_1 p_1(2) + k_2 p_2(2) = (k_1 \cdot p_1 + k_2 \cdot p_2)|_{t=2}$$

we checked $k_1 \cdot p_1 + k_2 \cdot p_2 \in S$. Therefore S is a subspace.

For $p(t) = a + bt + ct^2 \in S$,

$$p'(1) = p(2) \Rightarrow b + 2c = a + 2b + 4c \Rightarrow a + b + 2c = 0 \Rightarrow (a, b, c) = (-\lambda - 2\mu, \lambda, \mu)$$

where $\lambda, \mu \in \mathbb{R}$. Then $p(t) = -\lambda - 2\mu + \lambda t + \mu t^2 = \lambda(t - 1) + \mu(t^2 - 2)$, i.e. $S = \text{span}(t - 1, t^2 - 2)$. But $t - 1, t^2 - 2 \in S$ are obviously independent. Therefore $(t - 1, t^2 - 2)$ is a basis of S.

4.1.4 Required as in 4.1.3

$$\{ p(t) : \int_0^1 p(t)dt = 0 \}$$

Solution. Let $S = \{ p(t) : \int_0^1 p(t)dt = 0 \}$. For any $p_1, p_2 \in S$, $k_1, k_2 \in \mathbb{R}$, by

$$\int_0^1 (k_1 \cdot p_1 + k_2 \cdot p_2)dt = k_1 \int_0^1 p_1(t)dt + k_2 \int_0^1 p_2(t)dt = k_1 0 + k_2 0 = 0$$

we checked $k_1 \cdot p_1 + k_2 \cdot p_2 \in S$. Therefore S is a subspace.

For $p(t) = a + bt + ct^2 \in S$,

$$\int_0^1 p(t)dt = 0 \Rightarrow a + \frac{b}{2} + \frac{c}{3} = 0 \Rightarrow (a, b, c) = (-\lambda - \mu, -\lambda - 2\mu, \lambda, \mu)$$

where $\lambda, \mu \in \mathbb{R}$. Then $p(t) = -\frac{1}{2} - \frac{b}{3} + \lambda t + \mu t^2 = \lambda(t - \frac{1}{2}) + \mu(t^2 - \frac{1}{3})$, i.e. $S = \text{span}(t - \frac{1}{2}, t^2 - \frac{1}{3})$. But $t - \frac{1}{2}, t^2 - \frac{1}{3} \in S$ are obviously independent. Therefore $(t - \frac{1}{2}, t^2 - \frac{1}{3})$ is a basis of S.

4.1.21 Find a basis for the space of all diagonal 2×2 matrices, and determine its dimension.

Solution. Any diagonal 2×2 matrix looks like

$$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

This tells us that $\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$ is a basis because these two matrices are already independent as in $\mathbb{R}^{2 \times 2}$. The dimension is 2.

4.1.22 Find a basis for the space of all diagonal $n \times n$ matrices, and determine its dimension.
Solution. Any diagonal $n \times n$ matrix looks like

$$\begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix} = a_1 E_{11} + \cdots + a_n E_{nn}$$

where E_{ii} is the matrix with entries all 0 except a 1 at the i'th diagonal entry. This tells us that (E_{11}, \ldots, E_{nn}) is a basis because these n matrices are already independent as in $\mathbb{R}^{n \times n}$. The dimension is n.

4.1.24 Find a basis of the space of all upper triangular 3×3 matrices and determine its dimension.

Solution. Any upper triangular 3×3 matrix looks like

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{22} & a_{23} & \\ a_{33} & & \end{pmatrix} = a_{11} E_{11} + a_{12} E_{12} + a_{13} E_{13} + a_{22} E_{22} + a_{23} E_{23} + a_{33} E_{33}$$

where E_{ij} denotes the matrix with entries all 0 except for a 1 at the (i, j)-th place. This tells us that $(E_{11}, E_{12}, E_{13}, E_{22}, E_{23}, E_{33})$ is a basis because these 6 matrices are already independent as in $\mathbb{R}^{3 \times 3}$. The dimension is 6.

4.1.32 Find a basis of the space of all 2×2 matrices S such that

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} S = S \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

Solution. Let $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the condition becomes

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

which is simplified to be

$$\begin{pmatrix} a + c & b + d \\ a + c & b + d \end{pmatrix} = \begin{pmatrix} 2a & 0 \\ 2c & 0 \end{pmatrix}$$

By comparing the entries we get

$$\begin{align*}
 a + c &= 2a \\
 b + d &= 0 \\
 a + c &= 2c \\
 b + d &= 0
\end{align*}$$

so $(a, b, c, d) = (\lambda, \mu, \lambda, -\mu)$. Therefore $S = \begin{pmatrix} \lambda & \mu \\ \lambda & -\mu \end{pmatrix} = \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \mu \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$, i.e., $(\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mu \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix})$ is a basis of the space of all S’s. The dimension is 2.

4.1.50 Find all solutions of the differential equation $f''(x) + 8f'(x) - 20f(x) = 0$.

Solution. Solving the characteristic equation $\lambda^2 + 8\lambda - 20 = 0$ we have two eigenvalues $\lambda_1 = 2, \lambda_2 = -10$. Therefore all solutions are $f(x) = c_1 e^{2x} + c_2 e^{-10x}$, where $c_1, c_2 \in \mathbb{R}$.

Remark. Review how to solve a homogeneous linear ODE in Math 1B. Another way is to follow what we did in Example 18 of Section 4.1.

4.1.58 In this exercise we will show that the function $\cos x$ and $\sin x$ span the solution space V of the differential equation $f''(x) = -f(x)$.

2
a. Show that if \(g(x) \) is in \(V \), then the function \(g(x)^2 + g'(x)^2 \) is constant.

b. Show that if \(g(x) \) is in \(V \), with \(g(0) = g'(0) = 0 \), then \(g(x) = 0 \) for all \(x \).

c. If \(f(x) \) is in \(V \), then \(g(x) = f(x) - f(0) \cos x - f'(0) \sin x \) is in \(V \) as well. Show then \(f(x) = f(0) \cos x - f'(0) \sin x \).

Solution. a. Taking derivative we have

\[
(g^2 + (g')^2)' = (g^2)' + ((g')^2)' = 2gg' + 2g'g'' = 2g(g + g'')
\]

But \(g \in V \) means \(g'' = -g \), so the right handed side is zero. The derivative being always zero means \(g^2 + (g')^2 \) is constant.

b. Because \(g(x)^2 + g'(x)^2 = C \) is constant, plugging in \(g(0) = g'(0) = 0 \) we know the constant \(C = 0 \). Thus \(g(x)^2 + g'(x)^2 = 0 \), and since the summands are nonnegative, they must both be zero. In particular, \(g(x) = 0 \).

c. \(g(x) \) is in \(V \) because it's a linear combination of \(f, \cos x, \sin x \) which are all in \(V \). But \(g(0) = f(0) - f(0) \cos 0 - f'(0) \sin 0 = 0 \), \(g'(0) = f'(0) + f(0) \sin 0 - f'(0) \cos 0 = 0 \). By b. we know \(g(x) = 0 \), i.e. \(f(x) = f(0) \cos x + f'(0) \sin x \).

4.2.6 Find out if the transformation it is linear, and when linear, if it is isomorphism.

\[
T(M) = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}
\]

from \(\mathbb{R}^{2 \times 2} \) to \(\mathbb{R}^{2 \times 2} \).

Solution. Denote \(\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \) as \(A \). For any \(M_1, M_2 \in \mathbb{R}^{2 \times 2} \) and \(k_1, k_2 \in \mathbb{R} \),

\[
T(k_1M_1 + k_2M_2) = (k_1M_1 + k_2M_2)A = k_1M_1A + k_2M_2A = k_1T(M_1) + k_2T(M_2)
\]

Therefore \(T \) is linear. \(T \) is not an isomorphism because \(A \) is not invertible. In this case \(T \) maps any matrix to a non-invertible matrix so \(\text{im} T \) cannot be \(\mathbb{R}^{2 \times 2} \) (e.g. it avoids all invertible matrices).

4.2.12 Required as in 4.2.6, \(T(c) = c \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \) from \(\mathbb{R} \) to \(\mathbb{R}^{2 \times 2} \).

Solution. Denote \(\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \) as \(A \). For any \(c_1, c_2 \in \mathbb{R} \) and \(k_1, k_2 \in \mathbb{R} \),

\[
T(k_1c_1 + k_2c_2) = (k_1c_1 + k_2c_2)A = k_1c_1A + k_2c_2A = k_1T(c_1) + k_2T(c_2)
\]

Therefore \(T \) is linear. \(T \) cannot an isomorphism because the dimensions of target space and the source space are different.

4.2.14 Required as in 4.2.6, \(T(M) = \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} M - \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \) from \(\mathbb{R}^{2 \times 2} \) to \(\mathbb{R}^{2 \times 2} \).

Solution. Denote \(\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \) as \(A \). For any \(M_1, M_2 \in \mathbb{R}^{2 \times 2} \) and \(k_1, k_2 \in \mathbb{R} \),

\[
T(k_1M_1 + k_2M_2) = A(k_1M_1 + k_2M_2) - (k_1M_1 + k_2M_2)A = k_1(AM_1 - M_1A) + k_2(AM_2 - M_2A) = k_1T(M_1) + k_2T(M_2)
\]

Therefore \(T \) is linear. Observe that \(T(I_2) = A I_2 - I_2 A = A - A = 0 \) where \(I_2 \) is the unit matrix, and hence \(T \) is not an isomorphism because \(\ker T \neq \{0\} \) (e.g. it contains \(I_2 \)).

4.2.26 Required as in 4.2.6, \(T(f(t)) = f(-t) \) from \(P_2 \) to \(P_2 \).
Solution. For any $f_1, f_2 \in P_2$ and $k_1, k_2 \in \mathbb{R}$,

$$T(k_1 f_1 + k_2 f_2)(t) = (k_1 f_1 + k_2 f_2)(-t) = k_1 f_1(-t) + k_2 f_2(-t) = k_1 T(f_1)(t) + k_2 T(f_2)(t)$$

Therefore T is linear. Observe that T^2 is identity, i.e. $T(T(f(t))) = T(f(-t)) = f(t)$, so T is the inverse of itself. T is invertible and hence is isomorphism.

4.2.30 Required as in 4.2.6, $T(f(t)) = tf''(t)$ from P_2 to P_2.

Solution. For any $f_1, f_2 \in P_2$ and $k_1, k_2 \in \mathbb{R}$,

$$T(k_1 f_1 + k_2 f_2)(t) = (k_1 f_1 + k_2 f_2)(t)' = k_1 f_1'(t) + k_2 f_2'(t) = k_1 T(f_1)(t) + k_2 T(f_2)(t)$$

Therefore T is linear. Observe that $T(c) = t0 = 0$ where c is any constant polynomial, and hence T is not an isomorphism because $\ker T \neq \{0\}$ (e.g. it contains constant polynomials).

4.2.48 Required as in 4.2.6, $T(f(t)) = f'(t)$ from P to P.

Solution. For any $f_1, f_2 \in P$ and $k_1, k_2 \in \mathbb{R}$,

$$T(k_1 f_1 + k_2 f_2)(t) = (k_1 f_1 + k_2 f_2)(t)' = k_1 f_1'(t) + k_2 f_2'(t) = k_1 T(f_1)(t) + k_2 T(f_2)(t)$$

Therefore T is linear. Observe that $T(c) = t0 = 0$ where c is any constant polynomial, and hence T is not an isomorphism because $\ker T \neq \{0\}$ (e.g. it contains constant polynomials).

Remark. But in this case, $\text{im} T = P$, i.e. it is surjective. The explanation is that P is infinite dimensional.

4.2.56 Find image, rank, kernel and nullity of the transformation in 4.2.30

Solution. Let $f(t) = a + bt + ct^2$, then $T(f(t)) = t(a + bt + ct^2)' = bt + 2ct^2$. Thus $\text{im} T = \text{span}\{t, 2t^2\}$. Consider $bt + 2ct^2 = 0$ as a polynomial, i.e. all coefficients are zero, so $(a, b, c) = (\lambda, 0, 0)$ where $\lambda \in \mathbb{R}$. Thus $\ker T = \text{span}\{1\}$. The rank is $\dim \text{im} T = 2$, and the nullity is $\dim \ker T = 1$.

4.2.67 For which constants k is the linear transformation

$$T(M) = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} M - M \begin{pmatrix} 3 & 0 \\ 0 & k \end{pmatrix}$$

an isomorphism from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$?

Solution. The most standard way to understand a linear transformation is to find out its matrix under a favorable basis. For simplicity we write the standard basis of $\mathbb{R}^{2 \times 2}$, namely $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ as $(\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4)$. Then

$$T(\vec{e}_1) = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & k \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} = -\vec{e}_1$$

Similarly, $T(\vec{e}_2) = (2 - k)\vec{e}_2, T(\vec{e}_3) = 3\vec{e}_1 + \vec{e}_3, T(\vec{e}_4) = 3\vec{e}_2 + (4 - k)\vec{e}_4$. Therefore,
\[T \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = T(a\hat{e}_1 + b\hat{e}_2 + c\hat{e}_3 + d\hat{e}_4) \]
\[= T \left(\begin{array}{cccc} \hat{e}_1 & \hat{e}_2 & \hat{e}_3 & \hat{e}_4 \end{array} \right) \left(\begin{array}{c} a \\ b \\ c \\ d \end{array} \right) \]
\[= \left(\begin{array}{cccc} T(\hat{e}_1) & T(\hat{e}_2) & T(\hat{e}_3) & T(\hat{e}_4) \end{array} \right) \left(\begin{array}{c} a \\ b \\ c \\ d \end{array} \right) \]
\[= \left(\begin{array}{cccc} -\hat{e}_1 & (2-k)\hat{e}_2 & 3\hat{e}_1 + e_3 & 3\hat{e}_2 + (4-k)\hat{e}_4 \end{array} \right) \left(\begin{array}{c} a \\ b \\ c \\ d \end{array} \right) \]
\[= \left(\begin{array}{cccc} \hat{e}_1 & \hat{e}_2 & \hat{e}_3 & \hat{e}_4 \end{array} \right) \left(\begin{array}{cccc} -1 & 0 & 3 & 0 \\ 0 & 2-k & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4-k \end{array} \right) \left(\begin{array}{c} a \\ b \\ c \\ d \end{array} \right) \]

The matrix here is the matrix of \(T \) under the standard basis. Clearly it is an isomorphism if and only if \(k \) is neither 2 nor 4.

Remark. The third equality of the last computation formally looks like the associativity, which turns out to be true for linear transformation. Anyway, this way of computation helps us a lot to get a correct matrix of a transformation under a given basis. In fact, we may just formally compute \(T(\hat{e}_1 \hat{e}_2 \hat{e}_3 \hat{e}_4) = (T(\hat{e}_1) T(\hat{e}_2) T(\hat{e}_3) T(\hat{e}_4)) A \) to get the matrix \(A \) of \(T \) under any basis \((\hat{e}_1 \hat{e}_2 \hat{e}_3 \hat{e}_4) \) without writing down the coordinate column vector (cf. the solution of 4.2.68 as an example).

4.2.68 *For which constants \(k \) is the linear transformation \(T(M) = M \) an isomorphism from \(\mathbb{R}^{2 \times 2} \) to \(\mathbb{R}^{2 \times 2} \)?*

Solution. Use the same method as in 4.2.67, we will find \(T(\hat{e}_1) = 3\hat{e}_1, T(\hat{e}_2) = -\hat{e}_2, T(\hat{e}_3) = (5-k)\hat{e}_3, T(\hat{e}_4) = (1-k)\hat{e}_4 \). Therefore,

\[T \left(\begin{array}{cccc} \hat{e}_1 & \hat{e}_2 & \hat{e}_3 & \hat{e}_4 \end{array} \right) = \left(\begin{array}{cccc} T(\hat{e}_1) & T(\hat{e}_2) & T(\hat{e}_3) & T(\hat{e}_4) \end{array} \right) \]
\[= \left(\begin{array}{cccc} 3\hat{e}_1 & -\hat{e}_2 & (5-k)\hat{e}_3 & (1-k)\hat{e}_4 \end{array} \right) \]
\[= \left(\begin{array}{cccc} \hat{e}_1 & \hat{e}_2 & \hat{e}_3 & \hat{e}_4 \end{array} \right) \left(\begin{array}{cccc} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 5-k & 0 \\ 0 & 0 & 0 & 1-k \end{array} \right) \]

The matrix of \(T \) is invertible if and only if \(k \) is neither 5 nor 1.