Math221: Matrix Computations

Homework #3 Solutions

• 2.13 (3): Define $y_0 = c$ and

 $$y_{k+1} = y_k - A^{-1} (B y_k - c), \quad k = 0, 1, 2, \ldots.$$

 Then

 $$y_{k+1} - B^{-1} c = \left(I - A^{-1} B \right) \left(y_k - B^{-1} c \right).$$

 Hence

 $$\| y_{k+1} - B^{-1} c \| \leq \| A^{-1} \| \| A - B \| \| y_k - B^{-1} c \|.$$

 For $\| A - B \|$ sufficiently small, $\| A^{-1} \| \| A - B \| < 1$ and hence the limit of the sequence $\{ y_k \}$ is $B^{-1} c$.

• 2.18: We will assume that all the leading principal submatrices of A are non-singular. If this is not the case, a simple continuity argument would make up for the gap left by this assumption.

 Assume that we have performed k steps of Gaussian elimination, so that

 $$A = \begin{pmatrix} L_{11} & I \\ L_{21} & I \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ \hat{S} \end{pmatrix},$$

 where \hat{S} is the matrix that overwrites A_{22}.

 On the other hand, direct block elimination also gives

 $$A = \begin{pmatrix} I \\ A_{21} A_{11}^{-1} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ \hat{S} \end{pmatrix}.$$

 Replacing A_{11} by its LU factorization $A_{11} = L_{11} U_{11}$, and by the uniqueness of the LU factorization, we can rewrite the above equation as

 $$A = \begin{pmatrix} L_{11} \\ L_{21} & I \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ \hat{S} \end{pmatrix}.$$

 Hence $\hat{S} = S$.
• Problems 2.20:

 – (a): Compute GEPP $A = PLU$. Solving $A^k x = b$ then involves k permutations as well as k forward and backward substitutions. Total cost: $2/3n^3 + kn^2 + O(n^2)$.

 – (b): Compute GEPP $A = PLU$, and solve for $A^{-1} b$.

 – (c): Compute GEPP $A = PLU$. Solving $AX = B$ then involves m permutations as well as m forward and backward substitutions. Total cost: $2/3n^3 + mn^2 + O(n^2)$.