Problem set: Franklin Section 1.17, Problems 1,2,3,4,5,6,9,11

Problems checked: Franklin Section 1.17, Problems 1,2,3,5,6

Grading scheme:

\[X \] for “complete”: significant effort demonstrated
\[O \] for “fail”: lack of demonstration of significant effort

Problems graded: Franklin Section 1.17, Problems 4,9,11

Grading scheme:

3 for “excellent": Necessary steps are all shown and well explained.
Solution is correct.

2 for “fair": Necessary steps are all shown.
There are minor gaps in explanation and/or minor errors in solution.

1 for “poor": Necessary steps are lacking.
There are major gaps in explanation and/or major errors in solution.

0 for “fail": Significant effort is not demonstrated.
Sample solutions:

Franklin Section 1.17, Problem 4 Following example 2 in the text, start with

\[
\begin{bmatrix}
0 & 0 & 0 \\
3 & 3 & 3 & 2 \\
5 & 1 & 3 & 5 \\
3 & 2 & 1 & 3
\end{bmatrix}
\]

qualification matrix

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{bmatrix}
\]

Complete assignment is impossible, so we need to continue. It is possible to increase \(v_3 \) and decrease \(u_2 \) and \(u_3 \) by one without violating the constraint, giving

\[
\begin{bmatrix}
0 & 0 & 1 \\
3 & 3 & 3 & 2 \\
4 & 1 & 3 & 5 \\
2 & 2 & 1 & 3
\end{bmatrix}
\]

qualification matrix

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{bmatrix}
\]

Complete assignment is now possible, with the 2 in the first column, the 3 in the top spot of the second column and the 5 in the third column, giving a maximum sum of 10 for the OK subsets. This solution is readily apparent by inspection.

Franklin Section 1.17, Problem 9 Clearly, for any \(c_1, c_2 \) in the network, the shortest path from \(a \) to \(c_2 \) is less than or equal to the shortest path from \(a \) to \(c_1 \) plus \(\tau(c_1, c_2) \), so \(\phi \) is an admissible potential. For any \(\lambda \neq \omega \), \(\phi(\omega) \leq \phi(\lambda) + \tau(\lambda, \omega) \), so this also holds for the minimizing \(\lambda \). On the other hand, for \(\lambda \) the preceding node to \(\omega \) on the minimizing path from \(a \) to \(\omega \), equality holds, so \(\phi(\omega) \) is greater than or equal to the minimum over all \(\lambda \neq \omega \). Hence, the functional equation holds.

Franklin Section 1.17, Problem 11 Letting \(\otimes \) represent the Kronecker product of matrices (look this up if you are not familiar with it; it is a very handy thing to know), \(\text{Vec} \) be the operation that stacks the columns of a matrix to form a column vector, \(I_n \) be the \(n \times n \) identity matrix, and \(e_n \) be the row matrix of \(n \) ones, then the transportation problem can be written in block form as the canonical optimization problem

\[
\left[e_m \otimes I_n \right] \text{Vec}X = \begin{bmatrix} s \\ d \end{bmatrix}, \text{Vec}X \geq 0, \text{minimize}(\text{Vec}C)^T \text{Vec}X
\]

with dual problem

\[
\left[u^T \ v^T \right] \left[e_m \otimes I_n \right] \leq (\text{Vec}C)^T, \text{maximize}\left[u^T \ v^T \right] \begin{bmatrix} s \\ d \end{bmatrix}
\]

which written in indicial notation is what is asked to demonstrate.