1. **Problem 3:** Let

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = (a_1 \ a_2 \ a_3). \]

Then \(a_1, a_2, a_3, a_1, a_2, a_3, a_3, a_1 \) are the subsets that generate basic cones. The other set \(a_1, a_2, a_3 \) is linearly dependent.

2. **Problem 4:** After a change in any entry of \(A \), its columns become linearly independent. So all subsets, including \(a_1, a_2, a_3 \), generate basic cones.

3. **Problem 6:** Let \(C_1, \cdots, C_N \) be closed sets, and let \(C \) be their union. We want to show that \(C \) is closed. To this end, let \(\{x^n\}_{n=1}^{\infty} \) be a sequence in \(C \) with a limit,

\[\lim_{n \to \infty} x^n = x^*. \]

We have to show that \(x^* \in C \).

Since we have a finite number of the closed sets \(C_i \)'s but infinite number of points in the sequence \(\{x^n\}_{n=1}^{\infty} \), it must be that there must be a specific closed set, say, \(C_t \), in which an infinite subset of \(x^n_{n=1}^{\infty} \) lives. Call this subset \(\{x^{n_k}\}_{k=1}^{\infty} \). This subset then is also convergent and converges to the same limit. Hence

\[\lim_{k \to \infty} x^{n_k} = x^*. \]

Since \(C_t \) is a closed set, and the subsequence lives in it, it follows that \(x^* \in C_t \), hence \(x^* \in C \).

The word finite is necessary. Consider an infinite sequence of sets

\[C_N = [1/N, 1], \]

for \(N = 1, 2, \cdots, \) These sets are all closed, but their union is \((0, 1] \), which is not closed.

4. **Problem 7:** Since rank of \(A \) is \(r \), any subset of at least \(r + 1 \) columns is linearly dependent. But a subset of at most \(r \) columns could be linearly independent. Hence an upper bound on the total number of basic cones is

\[\sum_{j=1}^{r} C_n^j. \]