Prof. Ming Gu, 861 Evans, tel: 2-3145
Email: mgu@math.berkeley.edu
http://www.math.berkeley.edu/~mgu/MA16A

Math16A Sample Midterm I, Fall 2009

This is a closed book, closed notes exam. You need to justify every one of your answers unless you are asked not to do so. Completely correct answers given without justification will receive little credit. Look over the whole exam to find problems that you can do quickly. You need not simplify your answers unless you are specifically asked to do so. Hand in this exam before you leave.

Problem	Maximum Score	Your Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	100	
10	Total	

Your Name \& SID:
Your Section \& GSI: \qquad

1. Find the points of intersection of
(a) $y=x^{2}-5 x$ and $y=-x-3$.
(b) $y=-\frac{1}{x+1}$ and $y=x+3$.
2. Compute the derivatives of the following functions
(a) $f(x)=x\left(\frac{1}{\sqrt{x}}-x^{\frac{2}{3}}\right)$.
(b) $f(x)=\frac{1}{\sqrt{x^{2}+1}}$.
3. Compute the following limits
(a) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$.
(b) $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{3}+1}$.
4. Compute the second derivatives of the following functions
(a) $f(x)=x^{4}+x^{3}+x^{2}+1$.
(b) $f(x)=\frac{1}{(x+1)^{2}}$.
5. Using the limit definition of the derivative to compute the derivative of $f(x)=\frac{1}{\sqrt{x+1}}$ at $x=1$.
6. Sketch the graph of the function $f(x)=|x-1|+|x+1|$. Discuss the continuity and differentiability of $f(x)$ at points $x=-1,0,1$.
7. Find all equations of the lines of the form $y=m x-1$ that are tangent to the curve $y=x^{2}-2 x$.
8. Suppose that $\$ 2000$ is invested at an interest of 10% per year, compounded twice per year. What is the the compound interest at the end of the first year?
9. Consider the cost function $C(x)=1+x+\frac{1}{x+1}$ and revenue function $R(x)=2 x+x^{2}$. Compute the marginal cost, marginal revenue and profit at $x=3$.
10. Given functions $f(x)$ and $g(x)$, and assume that $\lim _{x \rightarrow a} f(x)=F$ and $\lim _{x \rightarrow a} g(x)=G$ exist. Show that $\lim _{x \rightarrow a}(f(x)-g(x))=F-G$.
