Self Introduction

» Name: Ming Gu

» Office: 861 Evans

» Email: mgu®@berkeley.edu

» Office Hours: MWF 3:30-5:00PM

» Class Website:
math.berkeley.edu/~mgu/MA128BSpring2018



Text Book

» Burden and Faires, Numerical Analysis.
Required. Homework based on 9 edition.
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Math 98: Introduction to Matlab

» runs 6 weeks, starting next week;
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Material to be covered in class
» First 9 weeks: Chapters 7 through 10 of Text Book,
except Section 10.5.

» Remaining 5 weeks: special topics in (randomized)
numerical linear algebra. Paper links on class website.

» NO differential equations.



Class Work

» First 9 weeks: weekly home work sets;
Count best 8, total 24 points.

» 4 Quizzes:
Count best 3, total 12 points.

v

1 Project, total 24 points;

v

1 Midterm exam, 20 points;

v

1 Final exam, 20 points.

FINAL WORTH 40 POINTS IF MIDTERM
MISSING.

v



Quiz and Exam Schedule

» Quiz: Jan. 25 in discussion
» Quiz: Feb. 8 in discussion
» Quiz: Feb. 22 in discussion
» Quiz: Mar. 8 in discussion
» Midterm: Mar. 22 in class
» Project Presentation: Apr. 30, May 2, May 4 in class

» Final Exam: Tues., 5/08/18, 11:30-2:30pm
(Exam Group 6)



Grade Scale

» A- to A+: at least 85 points;

» B- to B+4: between 70 and 85 points;
» C- to C+: between 60 and 70 points;
» D: between 55 and 60 points;

» F: less than 55 points.

No grade curve; most people get A level or B level grades.




Gaussian Elimination with partial pivoting (GEPP): Review

dil 4a12 -+ din

a1 ax» -+ az
A=

dnl dn2 ' ann



Gaussian Elimination with partial pivoting (GEPP): Review

di1 d12 - din

dp1 d22 -+ d2p
A=

dnl dan2 *°*  @ann

> fors=1,2,--- ,n—1:
» pivoting: choose largest entry in absolute value:

iv, & E, < E
Piv, = argmaxs§j§n|ajs‘7 s < piv,



Gaussian Elimination with partial pivoting (GEPP): Review

di1 d12 - din

dz1 d22 - a2p
A=

dnl dn2 ' ann

> fors=1,2,--- ,n—1:
» pivoting: choose largest entry in absolute value:

iv, & E < E
piv, = argmax,.;c,|aj/, s < Epiv,

(PERMUTATION: interchange rows s and piv,).



Gaussian Elimination with partial pivoting (GEPP): Review

di1 d12 - din

dp1 d22 -+ d2p
A=

dnl dan2 *°*  @ann

> fors=1,2,--- ,n—1:
» pivoting: choose largest entry in absolute value:

piv, aef argmax,;,lail,  Es < Epiv,
(PERMUTATION: interchange rows s and piv,).
> eliminating x; from E;;; through E,:
ajs

/jS fr— s S—|—1§J§n7
aSS

overwrite

ajx — lsask, s+1<j, k<n

ajk



GEPP as LU factorization

Theorem: Let A = (a;;) € R™*" be non-singular. Then GEPP
computes an LU factorization with permutation matrix P such that

PR (RN NN



GEPP as LU factorization, example

0 0 -1 1
1 1 -1 2
A 11 20| P=
1 2 02
1 11
1 1 1
p-A = -1 0 1

wWw N O DN



Solving general linear equations with GEPP

Ax=b, P-A=L-U

> interchanging components in b
P-(Ax)=(P-b), (L-U)x=(P-b).
» solving for b with forward and backward substitution

x = (L-U)Y'(P-b)
= (U Peb)).



Solving general linear equations with GEPP

Ax=b, P-A=L-U

v

interchanging components in b
P-(Ax)=(P-b), (L-U)x=(P-b).
» solving for b with forward and backward substitution

x = (L-U)Y'(P-b)
= (U Peb)).

Cost Analysis

computing P- A= L - U: about 2/3n> operations.

v

v

forward and backward substitution: about 2n? operations.

v

maybe too expensive for large n. ‘




§7.1 Vector Norm

A VECTOR NORM on R" is a function, || - ||, from R"” into R with
the following properties:

(i) ||x|| > 0 for all x € R",

(i) ||x|] = 0 if and only if x =0,
(iii) |jax|| = |a|||x]|| for all &« € R and x € R”,
(iv) lx+yll < [lx[| + [ly[l for all x,y € R™.



§7.1 Vector Norm

A VECTOR NORM on R" is a function, || - ||, from R"” into R with
the following properties:

(i) ||x|| > 0 for all x € R",

(i) ||x|] = 0 if and only if x =0,
(iii) |jax|| = |a|||x]|| for all &« € R and x € R”,
(iv) lx+yll < [lx[| + [ly[l for all x,y € R™.

X1
Examples: 2—norm and co—norm for x =

Xn

def def
Ixll2 = /5§ + -+ x2, and x|l = maxi<jcalxl.



Unit 2—norm and Unit co—norm

» Unit 2—norm: unit disk in R?, unit ball in R3

E X3

The vectors in the
The vectors in [R? first octant of [R3
with Z, norm less with 7, norm less
than 1 are inside ©. 1) than 1 are inside
this figure. 0,0, 1) this figure.

(—1,0) (1. 0)

x5

(1,y {' 4({1\,0)
xy Xz

©, —1)



Unit 2—norm and Unit co—norm

» Unit 2—norm: unit disk in R2, unit ball in R3

(=10

2 *s The vectors in the
The vectors in €2 first octant of [R3
with 7, norm less with 7, norm less
than 1 are inside (0. 1) than 1 are inside
this figure. .0, 1) this figure.
a1, 0)
X1
. y} 0.1.0)
Xy X2
©. —1)

» Unit co—norm:

Xz
“L . 1) .
(-1, 0 (1, 0)

1. -1 [CRY) a.

The vectors in R? with
1. norm less than 1 are
inside this figure.

unit square in R?, unit box in R3:

x5
0.0, 1) I

a.0.ny . ©.1.1)
(L1
(.00 J -
_— (0.1, 0)
xy -
1,1,0) 2

The vectors in the first
octant of R? with 7., norm
less than 1 are inside
this figure.



Example: 2—norm and co—norm for x = | —2

Solution:

Ix[l2 = \/12+(—2)2+32:\/ﬁ:3.7---,
HXHOO = max(17’_2’73):3



Equivalence of 2—norm and co—norm

X1
X2
Theorem: For each x = ] ,
Xn
[Xlloo < [Ix]l2 <V [X[loo: O
Proof:
n n
I3, = maxici<alx® <> Il* = x5 <> X2 = n 2.

j=1 j=1



HNlustration:  ||x|[oc < [|X]l2 < V2 [|X||oc
X2 A

I < 1

|l <1

5
/

[ Ixll. <

N\ﬁ =y



Cauchy-Schwarz Inequality

X1 1

X2 Y2
Theorem: For each x = ) andy = . ,

Xn Yn

n

n
A SN Zy, Il 1yl
j=1

j=1
1 1
Example: forx=| -2 | andy=| -1 ],
3 1
Ixll2 = V14, |lyll2= V3,
‘xTy‘ = 6<V14 x V3.



Proof of ‘Z}’_l ijj‘ < \/Zf_l x? \/Zf_l v

n n n
1
= <E Xi)’i) X (2 ijj) =5 E (2xi yi, xj ¥j)
i—1 =1

ij=1
= ;;}l(2X;y;,xjyj—(><iyj)2—(xjyi)2)
+ (i + (50)?)
= IS (<O —) + (o + (i)

ij=1

1 Z ( X yj)? ><in)2) = (Z;X2> x (;yf) '

IJ].

IN



The Triangle Inequality

Theorem: For each x andy € R”,

x+yly < lxll+lyl,

1 1
Example: forx=| -2 Jandy=| -1 |,
3 1

Ixl2 = V14, |y].= V3,
[x+yllo = V29=5.38--.
< xlly +llyll, = V14 +V3=547---.



Proof of Triangle Inequality: ||x + yl|, < [Ix|l, + |lyll,

(x+y) (x+y)=x"x+2xTy+yTy
Ix[13 +2xTy + |lyll3

%113 + 2111, [lylly + [lyll3

= (Ixlly + lIyllp)*-

2
[+ ylI>

IN




2—norm Distance and co—norm Distance for

X1 n
X2 ¥
X = . and Yy = .
Xn )/n
Definition:
def
O N

def
Ix = ylloo = maxicj<nlxj — yj|-



X1 X1
(k)
Let x = )52 and x(K) = XZ_ e R"forall k > 1
X, X,(;k)

Def: Sequence {x(K)} is said to converge to x with respect to norm
|| - || if, given any € > 0, there exists an integer N(e) such that

IxX*K) —x|| < e forall k> N(e).



(k)

X1 X1
(k)
Let x = X,2 and x(K) = XZ_ e R"forall k > 1
X, X,(;k)

Def: Sequence {x(K)} is said to converge to x with respect to norm
|| - || if, given any € > 0, there exists an integer N(e) such that

IxX*K) —x|| < e forall k> N(e).

Thm: Sequence {x(¥)} is said to converge to x with respect to
oo—norm if and only if

)

Iimkﬁooxi( =x; foreach i=1,---,n.



Proof: {x(K)} converges to x in co—norm if and only if
(k)

lim,_,.ox;"’ = x; for each i
Assume {x(K)} converges to x in co—norm. Given any € > 0, there
exists an integer N(e) such that
x5 —x||oo <€ forall k> N(e).
Thus for each i =1,--- ,n and each k > N(e),
(k)

I — x| < x5 — x| < e

By definition of limit, for each i

(k)

Ilmk—>ooX,' = Xj.



Proof: {x(K)} converges to x in co—norm if and only if
(k)

lim,_,.ox;"’ = x; for each i
Assume {x(K)} converges to x in co—norm. Given any € > 0, there
exists an integer N(e) such that
x5 —x||oo <€ forall k> N(e).
Thus for each i =1,--- ,n and each k > N(e),
(k)

I — x| < x5 — x| < e

By definition of limit, for each i

(k)

Ilmk—>ooX,' = Xj.
Conversely, assume for each i

(k)

lim_x;"/ =x; --- Proof omitted.



Proof: {x(K)} converges to x in co—norm if and only if
(k)

lim,_,.ox;"’ = x; for each i
Assume {x(K)} converges to x in co—norm. Given any € > 0, there
exists an integer N(e) such that
x5 —x||oo <€ forall k> N(e).
Thus for each i =1,--- ,n and each k > N(e),
(k)

I — x| < x5 — x| < e

By definition of limit, for each i

(k)

Ilmk—>ooX,' = Xj.
Conversely, assume for each i

(k)

lim_x;"/ =x; --- Proof omitted.

1 1
Ex: Sequence {x(K)}, x(k) = 1/k , converges to
sin(k)/k> 0

o



Matrix Norm

A MATRIX NORM on R"™" is a function, || - ||, from R"*" into R
with the following properties:

(i) ||All = 0 for all A€ R™7,

(i) Al =0 if and only if A =0 € R"™",
(iii) ||cA|| = |a ||A]| for all @ € R and A € R"™*",
(iv) [[A+ B| < ||A|l +||B]| for all A,B € R"™",
(v) [JABJ| < [|A| ||B]| for all A,B € R™".



Matrix Norm

A MATRIX NORM on R"™" is a function, || - ||, from R"*" into R
with the following properties:

(i) ||All = 0 for all A€ R™7,

(i) Al =0 if and only if A =0 € R"™",
(iii) ||cA|| = |a ||A]| for all @ € R and A € R"™*",
(iv) [[A+ B| < ||A|l +||B]| for all A,B € R"™",
(v) [JABJ| < [|A| ||B]| for all A,B € R™".

NATURAL NORM Thm: If || - || is a vector norm on R”, then

def Az




Matrix Norm

A MATRIX NORM on R"™" is a function, || - ||, from R"*" into R
with the following properties:

(i) ||All = 0 for all A€ R™7,

(i) Al =0 if and only if A =0 € R"™",
(iii) ||cA|| = |a ||A]| for all @ € R and A € R"™*",
(iv) [[A+ B| < ||A|l +||B]| for all A,B € R"™",
(v) [JABJ| < [|A| ||B]| for all A,B € R™".

NATURAL NORM Thm: If || - || is a vector norm on R”, then

def |Az]|
A S max, i (= max ;1| Az]|)

is a matrix norm. O



Matrix 2—norm and co—norm, A = ( g _02 >
def

> Matrix 2—norm: [|All2 = max,,—1[|Az[]2

xxxxx

Xy T
A
. IIxllz = 1 *
[l T!
—1
X, P




Matrix 2—norm and co—norm, A = ( g —02 >
def

> Matrix 2—norm: [|All2 = max,,—1[|Az[]2

+ 3
Ax for
IIxl> =1

xa |
A
. lIxll = 1 x
P21 T1
—1

1 1 P ¢ +
1 14

s
; def
» Matrix co—norm: [|Alloc = max|,|_.=1/lAz]|
b - Ax for
IHXHx =1 ,_H/}”z;_ 2 xll.=1
R N
— - . A
— 1,
T —2




Thm: Let A =(a;) € R™" then ||A|| ;=maxi<i<, )7 |aj|



Thm: Let A =(a;) € R™" then ||A|| .=maxi<i<n, > |aj]

J
Proof (Part I): Partition and define
alT 4l
A= , Z= s
al 2
and |laj[|; = > 7, [aji| for 1 <i < n. Then
al 2
Az = : ,  therefore
alz
1Azl = maxicicn|a) z
n
< maxi<i<ol[ailly |2l = | maxi<icn Y 35| | 2]l -
j=1

It follows that [|A[l,, < maxi<i<n > 7y |ay]-



Thm: Let A =(a;) € R™" then ||A|| ;=maxi<i<, )7 |aj|



Thm: Let A =(a;) € R™" then ||A|| .=maxi<j<, >+

Proof (Part Il): Let

n n
Y lal = maxicicn Y |yl
J=1 j=1
and z = sign(a,). Then ||z| =1, and

1Az], =

al'z| = llad,

n
= maxlg,-g,, Z \a,-j| .
j=1

Put together

n n

maxi<i<n Y [aj] < [[All < maxicicn Y |ayl.

=1 j=1

J

_1 |ajj]



Example: Matrix co—norm, A =

1
—2 |, and |ja|; =6,
3

1
1 ) and |laz][; =3,
1

-2
1 |, and |az]; =3,
0

|All, = max(6,3,3) = 6.



§7.2 Eigenvalues and Eigenvectors

Let A € R™" be a square matrix.

» The CHARACTERISTIC POLYNOMIAL of A is defined by
p(\) =det(A—\l).

» The EIGENVALUES of A are those values of A\ such that

i.e., those values of A such that the matrix A — A/ is singular.

» For any eigenvalue ), its EIGENVECTOR X is any non-zero
vector such that

(A= Al)x = 0.



0
1

BN O

2
Ex: Eigenvalues/Eigenvectors of A= | 1
1 -1

» The CHARACTERISTIC POLYNOMIAL of A is

2—-X 0 0
p(A) = det(A)\l)det( 1 1-Xx 2 )
1 -1 4-)
1-x 2 2
= (2—)\)det< 1 4_)\)42—/\) (A*—5X+6)
= —(A—22(\-3).

» For eigenvalue \; = 3, its EIGENVECTOR X; satisfies

-1 0 O 0
1 -2 2 |x3=0, implying x3=1[ ¢ for £ #£ 0.
1 -11 £



2
Ex: Eigenvalues/Eigenvectors of A= | 1
1

» For double eigenvalue Ay = 2, its EIGENVECTOR X satisfies

0 0 O 1 0
1 =1 2 |xx=0, ie, xo=af 1 |+8]| 2 | #0.
1 -1 2 0 1



Let A € R™" be a square matrix.

» The SPECTRAL RADIUS of A is defined by

p(A) *f max {|\| | A is an eigenvalue of A.}
» Thm: .
- 1Al = (o (A7 A)) .
> p(A) < ||A|| for any natural norm || - |.



1
Ex: Find 2—norm of A = 1

—_ N =
N = O

—1

Solution: By earlier theorem,

Al = (0 (A7 4))*

N



Ex: Find 2—norm of A =

Solution: By earlier theorem,

AL = (o (47 A))?.

-1 1 1
1 1 2
2 -1 1

Calculating,
AT A= (

O = =
=N



1
Ex: Find 2—norm of A = 1

—_ N =
N = O

—1

Solution: By earlier theorem,

1Al = (0 (AT 4))

Calculating, 11 -1 11
ATA=11 2 1 1 2
01 2 -1 1

3\ 2
and det(ATA—)\I) — det| 2 66—

N

= A3 4+14X02 42



1
Ex: Find 2—norm of A = 1

—_ N
Nk O

—1

Solution: By earlier theorem,

1Al = (0 (AT 4))

Calculating, 11 -1 11
ATA=11 2 1 1 2
01 2 -1 1

3\ 2 -1
and det(ATA—)\I) — det| 2 6-) 4
1 4 5

= A3 4+14X02 42
Setting det (AT A— X\ 1) =0 leads to A = 0,7 + /7. Thus

1A, = \/max{0,7ﬁ,7+ﬁ} =\/7+ V7.

N




Convergent Matrices
A matrix A € R™" is CONVERGENT if

lim,_ (Ak) =0, foralll1<ij<n.
1)



Convergent Matrices
A matrix A € R™" is CONVERGENT if

lim,_ (Ak> =0, foralll1<ij<n.
1)

Ex: Show that

1=

) is a convergent matrix.

Ni= O

Solution: Easy to verify that

) for all k > 1.

>
N
Il
/N
'\R):‘om"“
N~ o
~_
>
X
\
VR
=
2B
R= o



Thm: The following statements are equivalent

(i) A€ R"™"is a convergent matrix,

(i) limy_ o0 HA"H = 0 for some natural norm,
(i) limy_ HAkH = 0 for all natural norms,
(i) p(A) <1

(v) limy_,,oAX x = 0 for every x € R".



§7.3 The Jacobi and Gauss-Siedel lterative Techniques

» Problem: To solve Ax = b for A € R"*".
» Methodology: lteratively approximate solution x. No GEPP.



§7.3 The Jacobi and Gauss-Siedel lterative Techniques

» Problem: To solve Ax =b for A € R"™*".
» Methodology: lteratively approximate solution x. No GEPP.
0

MATRIX SPLITTING

32,1 0
A = diag(ai1,a22, " ,ann) +

an—11 an-12 - 0
dan,1 an,2 *t dpn-1

0 aip -+ aip-1 ain

0 - anp1 an

n .
0 dn—1,n

0

0



§7.3 The Jacobi and Gauss-Siedel lterative Techniques

» Problem: To solve Ax =b for A € R"™*".
» Methodology: lteratively approximate solution x. No GEPP.
0

MATRIX SPLITTING

32,1 0
A = diag(ai1,a22, " ,ann) +
an—11 an-12 - 0
dan,1 an,2 *t dpn-1
0 aip -+ aip-1 ain
0 - anp1 an
n .
0 dn—1,n
0

0



10

Ex: Matrix splitting for A = _21
0
A= \ - L -
0
— diag(10,11,10,8) — 12 (1’ .

-1 2
11 -1
-1 10
3 -1

0

3
—1

8



The Jacobi and Gauss-Siedel Methods for solving Ax = b
JAacoBl METHOD: With matrix splitting A= D — L — U, rewrite
x=D1(L+U)x+D'b.
Jacobi iteration with given x(©),

xXk D = p L+ U)xW + Db, for k=0,1,2,---.



The Jacobi and Gauss-Siedel Methods for solving Ax = b

JAacoBl METHOD: With matrix splitting A= D — L — U, rewrite
x=D1(L+U)x+D'b.
Jacobi iteration with given x(%),
xXk D = p L+ U)xW + Db, for k=0,1,2,---.

(GAUSS-SIEDEL METHOD: Rewrite

x=(D—-L)*Ux+(D—-L)"b.
Gauss-Siedel iteration with given x(o),

xXk) = (D 1)t Ux® 4 (D~ L) b, for k=0,1,2,---



Ex: Jacobi Method for Ax = b, with

A=

10 -1 2 O
-1 11 -1 3
2 -1 10 -1
0 3 -1 8
D—-L-U

diag (10,11,10,8) —

, b=



Ex: Jacobi Method for Ax = b, with

10 -1 2 0 6
-1 11 -1 3 25
A= , b=
2 —1 10 -1 —11
0O 3 -1 8 15
A= D-L-U
0 01
. 1 0 0
= diag(10,11,10,8) — 5 1 0 -
0 -3 10
Jacobi iteration with x(9) =0, for k =0,1,2,---
= b+ u)x{? + Db
0 % —f O 10
19 £ 3 bi
— 11 i1 11 | (k) 4 11
B BN S el RN h
o 1, | 10 130
0 -5 5 O 5

-2 0
1 -3
0 1

0



Ex: Gauss-Siedel Method for Ax = b

A= D-L-U
10 0
-1 11
2 -1 10
0 3 -1 8



Ex: Gauss-Siedel Method for Ax = b
A= D-L-U

10 01 -2 0
-1 n |01 -3
a 2 -1 10 0 1
0 3 -1 8 0
Gauss-Siedel iteration with x(©) = 0, for k =0,1,2, - - -
) — (D— 1) Uxes+(D— L)1 b
10 /01 =2 0
_ -1 11 0 1 -3 k)
- 2 —1 10 0 1 GS
0 3 -1 8 0
6
8
+ gl

|G
[S)



General lteration Methods

To solve Ax = b with matrix splitting A=D — L — U,
» JACOBI METHOD:

) = pt(L+ U)x{? + Db
» (GAUSS-SIEDEL METHOD:
xge D = (D~ 1) U@+ (D - 1) b,
GENERAL ITERATION METHOD: for k =0,1,2,---

xk+D) = 7x(F) 4 ¢

Next: convergence analysis on General Iteration Method




General Iteration: xkt1) = Tx() 4 ¢ for k =0,1,2,---

Thm: The following statements are equivalent
» p(T) < 1.
» The equation
x=Tx+c (1)

has a unique solution and {x(k)} converges to this solution
from any x(9),



General Iteration: xkt1) = Tx() 4 ¢ for k =0,1,2,---

Thm: The following statements are equivalent
» p(T) < 1.
» The equation
x=Tx+c (1)

has a unique solution and {x(k)} converges to this solution
from any x(9),

Proof: Assume p(T) < 1. Then (1) has unique solution x(*).

kD) _ () — T <X(k> _ X(*)> _ 72 (X(H) _ X(*))

— .= Tkl <x(0) - x(*)> — 0.

Conversely, if - -+ (omitted)



