Self Introduction

► Name: Ming Gu

▶ Office: 861 Evans

► Email: mgu@berkeley.edu

▶ Office Hours: MWF 3:30-5:00PM

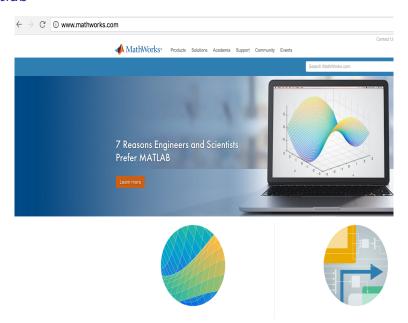
▶ Class Website:

 $math.berkeley.edu/{\sim}mgu/MA128BSpring2018$

Text Book

► Burden and Faires, **Numerical Analysis**. Required. Homework based on 9th edition.

Matlab



and maybe python

Math 98: Introduction to Matlab

runs 6 weeks, starting next week;

MATH 98BC 001 001 DIS

1 Units

002 DIS 1 Units

Tu

6:00 pm - 6:59 pm

o Total Open Seats

MATH 98BC 002

6:0

6:00 pm - 6:59 pm

o Total Open Seats

Material to be covered in class

- ► First 9 weeks: Chapters 7 through 10 of Text Book, except Section 10.5.
- ► Remaining 5 weeks: special topics in (randomized) numerical linear algebra. Paper links on class website.
- ► NO differential equations.

Class Work

- ► First 9 weeks: weekly home work sets; Count best 8, total 24 points.
- ► 4 Quizzes; Count best 3, total 12 points.
- ▶ 1 Project, total 24 points;
- ▶ 1 Midterm exam, 20 points;
- ▶ 1 Final exam, 20 points.
- ► FINAL WORTH 40 POINTS IF MIDTERM MISSING.

Quiz and Exam Schedule

- ▶ Quiz: Jan. 25 in discussion
- ▶ Quiz: Feb. 8 in discussion
- ▶ Quiz: Feb. 22 in discussion
- ▶ Quiz: Mar. 8 in discussion
- ▶ Midterm: Mar. 22 in class
- ▶ **Project Presentation**: Apr. 30, May 2, May 4 in class
- ► **Final Exam**: Tues., 5/08/18, 11:30–2:30pm (Exam Group 6)

Grade Scale

- ► A- to A+: at least 85 points;
- ▶ **B** to **B**+: between 70 and 85 points;
- ► C- to C+: between 60 and 70 points;
- ▶ **D**: between 55 and 60 points;
- ▶ **F**: less than 55 points.

No grade curve; most people get A level or B level grades.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

- for $s = 1, 2, \dots, n-1$:
 - pivoting: choose largest entry in absolute value:

$$\operatorname{\mathsf{piv}}_s \stackrel{\text{def}}{=} \operatorname{\mathsf{argmax}}_{s \leq j \leq n} |a_{js}|, \quad E_s \leftrightarrow E_{\operatorname{\mathsf{piv}}_s}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

- ▶ for $s = 1, 2, \dots, n 1$:
 - pivoting: choose largest entry in absolute value:

$$\operatorname{\mathsf{piv}}_s \stackrel{\text{def}}{=} \operatorname{\mathsf{argmax}}_{s \leq j \leq n} |a_{js}|, \quad E_s \leftrightarrow E_{\operatorname{\mathsf{piv}}_s}$$

($\underline{\text{PERMUTATION}}$: interchange rows s and \mathbf{piv}_s).

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

- ▶ for $s = 1, 2, \dots, n-1$:
 - pivoting: choose largest entry in absolute value:

$$\mathsf{piv}_s \stackrel{def}{=} \mathsf{argmax}_{s \leq j \leq n} |a_{js}|, \quad E_s \leftrightarrow E_{\mathsf{piv}_s}$$

(<u>PERMUTATION</u>: interchange rows s and \mathbf{piv}_s).

• eliminating x_s from E_{s+1} through E_n :

$$\begin{array}{ll} l_{js} & = = & \frac{a_{js}}{a_{ss}}, \quad s+1 \leq j \leq n, \\ \\ a_{jk} & = = & a_{jk} - l_{js} \; a_{sk}, \quad s+1 \leq j, \; k \leq n. \end{array}$$

GEPP as LU factorization

Theorem: Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be non-singular. Then GEPP computes an LU factorization with permutation matrix P such that

$$P \cdot A = L \cdot U = \left(\begin{array}{c} \\ \\ \end{array} \right) \cdot \left(\begin{array}{c} \\ \\ \end{array} \right).$$

GEPP as LU factorization, example

$$A = \begin{pmatrix} 0 & 0 & -1 & 1 \\ 1 & 1 & -1 & 2 \\ -1 & -1 & 2 & 0 \\ 1 & 2 & 0 & 2 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & & & \\ & & 1 & \\ & & 1 & \\ 1 & & & \end{pmatrix}.$$

$$P \cdot A = \begin{pmatrix} 1 & & & \\ 1 & 1 & & \\ -1 & 0 & 1 & \\ 0 & 0 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -1 & 2 \\ & 1 & 1 & 0 \\ & & 1 & 2 \\ & & & 3 \end{pmatrix} \stackrel{def}{=} L \cdot U.$$

Solving general linear equations with GEPP

$$A\mathbf{x} = \mathbf{b}, \quad P \cdot A = L \cdot U$$

interchanging components in b

$$P \cdot (A \mathbf{x}) = (P \cdot \mathbf{b}), \quad (L \cdot U) \mathbf{x} = (P \cdot \mathbf{b}).$$

solving for b with forward and backward substitution

$$\mathbf{x} = (L \cdot U)^{-1} (P \cdot \mathbf{b})$$
$$= (U^{-1} (L^{-1} (P \cdot \mathbf{b}))).$$

Solving general linear equations with GEPP

$$A\mathbf{x} = \mathbf{b}, \quad P \cdot A = L \cdot U$$

▶ interchanging components in b

$$P \cdot (A \mathbf{x}) = (P \cdot \mathbf{b}), \quad (L \cdot U) \mathbf{x} = (P \cdot \mathbf{b}).$$

solving for b with forward and backward substitution

$$\mathbf{x} = (L \cdot U)^{-1} (P \cdot \mathbf{b})$$
$$= (U^{-1} (L^{-1} (P \cdot \mathbf{b}))).$$

Cost Analysis

- ▶ computing $P \cdot A = L \cdot U$: about $2/3n^3$ operations.
- ▶ forward and backward substitution: about $2n^2$ operations.
- maybe too expensive for large *n*.

§7.1 Vector Norm

A VECTOR NORM on \mathbb{R}^n is a function, $\|\cdot\|$, from \mathbb{R}^n into \mathbb{R} with the following properties:

- (i) $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$,
- (ii) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$,
- (iii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$,
- (iv) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

§7.1 Vector Norm

A VECTOR NORM on \mathbb{R}^n is a function, $\|\cdot\|$, from \mathbb{R}^n into \mathbb{R} with the following properties:

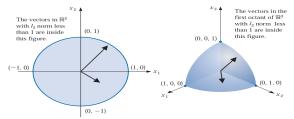
- (i) $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$,
- (ii) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$,
- (iii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$,
- (iv) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Examples: 2-norm and
$$\infty$$
-norm for $\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$:

$$\|\mathbf{x}\|_2 \stackrel{\text{def}}{=} \sqrt{x_1^2 + \dots + x_n^2}, \quad \text{and} \quad \|\mathbf{x}\|_{\infty} \stackrel{\text{def}}{=} \max_{1 \leq j \leq n} |x_j|.$$

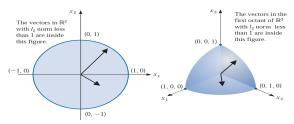
Unit 2—norm and Unit ∞—norm

▶ Unit 2—norm: unit disk in \mathbb{R}^2 , unit ball in \mathbb{R}^3

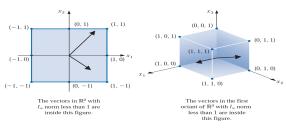


Unit 2—norm and Unit ∞—norm

▶ Unit 2—norm: unit disk in \mathbb{R}^2 , unit ball in \mathbb{R}^3



▶ Unit ∞ —norm: unit square in \mathbb{R}^2 , unit box in \mathbb{R}^3 :



Example: 2-norm and
$$\infty$$
-norm for $\mathbf{x} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

Solution:

$$\|\mathbf{x}\|_2 = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{14} = 3.7 \cdots,$$

 $\|\mathbf{x}\|_{\infty} = \max(1, |-2|, 3) = 3.$

Equivalence of 2-norm and ∞ -norm

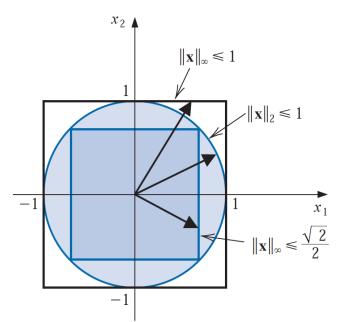
Theorem: For each
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
,

$$\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{\infty}.$$

Proof:

$$\|\mathbf{x}\|_{\infty}^2 = \max_{1 \le j \le n} |x_j|^2 \le \sum_{j=1}^n |x_j|^2 = \|\mathbf{x}\|_2^2 \le \sum_{j=1}^n \|\mathbf{x}\|_{\infty}^2 = n \|\mathbf{x}\|_{\infty}^2.$$

Illustration: $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_2 \leq \sqrt{2} \|\mathbf{x}\|_{\infty}$



Cauchy-Schwarz Inequality

Theorem: For each
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$,

$$\left| \mathbf{x}^{T} \mathbf{y} \right| = \left| \sum_{j=1}^{n} x_{j} y_{j} \right| \leq \sqrt{\sum_{j=1}^{n} x_{j}^{2}} \sqrt{\sum_{j=1}^{n} y_{j}^{2}} = \left\| \mathbf{x} \right\|_{2} \left\| \mathbf{y} \right\|_{2}.$$

Example: for
$$\mathbf{x} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$,

$$\|\mathbf{x}\|_2 = \sqrt{14}, \quad \|\mathbf{y}\|_2 = \sqrt{3},$$

 $\left|\mathbf{x}^T\mathbf{y}\right| = 6 < \sqrt{14} \times \sqrt{3}.$

Proof of $\left|\sum_{j=1}^n x_j y_j\right| \leq \sqrt{\sum_{j=1}^n x_j^2} \sqrt{\sum_{j=1}^n y_j^2}$

$$\left| \sum_{j=1}^{n} x_{j} y_{j} \right|^{2} = \left(\sum_{i=1}^{n} x_{i} y_{i} \right) \times \left(\sum_{j=1}^{n} x_{j} y_{j} \right) = \frac{1}{2} \sum_{i,j=1}^{n} (2 x_{i} y_{i}, x_{j} y_{j})$$

$$= \frac{1}{2} \sum_{i,j=1}^{n} \left(2 x_{i} y_{i}, x_{j} y_{j} - (x_{i} y_{j})^{2} - (x_{j} y_{i})^{2} \right)$$

$$+ \left((x_{i} y_{j})^{2} + (x_{j} y_{i})^{2} \right)$$

$$= \frac{1}{2} \sum_{i,j=1}^{n} \left(-(x_{i} y_{j} - x_{j} y_{i})^{2} \right) + \left((x_{i} y_{j})^{2} + (x_{j} y_{i})^{2} \right)$$

$$\leq \frac{1}{2} \sum_{i,j=1}^{n} \left((x_{i} y_{j})^{2} + (x_{j} y_{i})^{2} \right) = \left(\sum_{i=1}^{n} x_{i}^{2} \right) \times \left(\sum_{j=1}^{n} y_{j}^{2} \right).$$

The Triangle Inequality

Theorem: For each \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$,

$$\begin{split} \|\mathbf{x} + \mathbf{y}\|_2 &\leq \|\mathbf{x}\|_2 + \|\mathbf{y}\|_2 & & \Box \\ \mathbf{Example:} \ \text{for} \ \mathbf{x} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \ \text{and} \ \mathbf{y} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \\ \|\mathbf{x}\|_2 &= \sqrt{14}, \quad \|\mathbf{y}\|_2 = \sqrt{3}, \\ \|\mathbf{x} + \mathbf{y}\|_2 &= \sqrt{29} = 5.38 \cdots \\ &< \|\mathbf{x}\|_2 + \|\mathbf{y}\|_2 = \sqrt{14} + \sqrt{3} = 5.47 \cdots. \end{split}$$

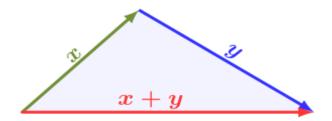
Proof of Triangle Inequality: $\|\mathbf{x} + \mathbf{y}\|_2 \le \|\mathbf{x}\|_2 + \|\mathbf{y}\|_2$

$$\|\mathbf{x} + \mathbf{y}\|_{2}^{2} = (\mathbf{x} + \mathbf{y})^{T} (\mathbf{x} + \mathbf{y}) = \mathbf{x}^{T} \mathbf{x} + 2 \mathbf{x}^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y}$$

$$= \|\mathbf{x}\|_{2}^{2} + 2 \mathbf{x}^{T} \mathbf{y} + \|\mathbf{y}\|_{2}^{2}$$

$$\leq \|\mathbf{x}\|_{2}^{2} + 2 \|\mathbf{x}\|_{2} \|\mathbf{y}\|_{2} + \|\mathbf{y}\|_{2}^{2}$$

$$= (\|\mathbf{x}\|_{2} + \|\mathbf{y}\|_{2})^{2}.$$



2-norm **Distance** and ∞-norm **Distance** for

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$

Definition:

$$\|\mathbf{x} - \mathbf{y}\|_2 \stackrel{\text{def}}{=} \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2},$$

$$\|\mathbf{x} - \mathbf{y}\|_{\infty} \stackrel{\text{def}}{=} \mathbf{max}_{1 \le j \le n} |x_j - y_j|.$$

Let
$$\mathbf{x}=\left(egin{array}{c} x_1\\ x_2\\ \vdots\\ x_n \end{array}\right)$$
 and $\mathbf{x}^{(k)}=\left(egin{array}{c} x_1^{(k)}\\ x_2^{(k)}\\ \vdots\\ x_n^{(k)} \end{array}\right)\in\mathbb{R}^n$ for all $k\geq 1$

Def: Sequence $\{\mathbf{x}^{(k)}\}$ is said to **converge** to \mathbf{x} with respect to norm $\|\cdot\|$ if, given any $\epsilon>0$, there exists an integer $N(\epsilon)$ such that $\|\mathbf{x}^{(k)}-\mathbf{x}\|<\epsilon$ for all $k\geq N(\epsilon)$.

Let
$$\mathbf{x}=\left(egin{array}{c} x_1\\x_2\\ \vdots\\x_n \end{array}\right)$$
 and $\mathbf{x}^{(k)}=\left(egin{array}{c} x_1^{(k)}\\x_2^{(k)}\\ \vdots\\x_n^{(k)} \end{array}\right)\in\mathbb{R}^n$ for all $k\geq 1$

Def: Sequence $\{\mathbf{x}^{(k)}\}$ is said to **converge** to \mathbf{x} with respect to norm $\|\cdot\|$ if, given any $\epsilon>0$, there exists an integer $N(\epsilon)$ such that $\|\mathbf{x}^{(k)}-\mathbf{x}\|<\epsilon$ for all $k\geq N(\epsilon)$.

Thm: Sequence $\{\mathbf{x}^{(k)}\}$ is said to **converge** to \mathbf{x} with respect to ∞ -norm if and only if

$$\lim_{k\to\infty} x_i^{(k)} = x_i$$
 for each $i = 1, \dots, n$.

Proof: $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in ∞ -norm if and only if $\lim_{k\to\infty} x_i^{(k)} = x_i$ for each i

Assume $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in $\infty-$ norm. Given any $\epsilon>0$, there exists an integer $N(\epsilon)$ such that

$$\|\mathbf{x}^{(k)} - \mathbf{x}\|_{\infty} < \epsilon$$
 for all $k \ge N(\epsilon)$.

Thus for each $i=1,\cdots,n$ and each $k\geq N(\epsilon)$,

$$|\mathbf{x}_i^{(k)} - \mathbf{x}_i| \leq ||\mathbf{x}^{(k)} - \mathbf{x}||_{\infty} < \epsilon.$$

By definition of limit, for each i

$$\lim_{k\to\infty}x_i^{(k)}=x_i.$$

Proof: $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in ∞ -norm if and only if $\lim_{k\to\infty}x_i^{(k)}=x_i$ for each i

Assume $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in $\infty-$ norm. Given any $\epsilon>0$, there exists an integer $N(\epsilon)$ such that

$$\|\mathbf{x}^{(k)} - \mathbf{x}\|_{\infty} < \epsilon$$
 for all $k \ge N(\epsilon)$.

Thus for each $i=1,\cdots,n$ and each $k\geq N(\epsilon)$,

$$|\mathbf{x}_i^{(k)} - \mathbf{x}_i| \leq ||\mathbf{x}^{(k)} - \mathbf{x}||_{\infty} < \epsilon.$$

By definition of limit, for each *i*

$$\lim_{k\to\infty}x_i^{(k)}=x_i.$$

Conversely, assume for each i

$$\lim_{k\to\infty} x_i^{(k)} = x_i \quad \cdots \quad \text{Proof omitted.}$$

Proof: $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in ∞ -norm if and only if $\lim_{k\to\infty} x_i^{(k)} = x_i$ for each i

Assume $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in ∞ -norm. Given any $\epsilon > 0$, there exists an integer $N(\epsilon)$ such that

$$\|\mathbf{x}^{(k)} - \mathbf{x}\|_{\infty} < \epsilon$$
 for all $k > N(\epsilon)$.

Thus for each $i=1,\cdots,n$ and each $k\geq N(\epsilon)$,

$$|\mathbf{x}_i^{(k)} - \mathbf{x}_i| \le \|\mathbf{x}^{(k)} - \mathbf{x}\|_{\infty} < \epsilon.$$

By definition of limit, for each i

$$\lim_{k\to\infty} x_i^{(k)} = x_i.$$

Conversely, assume for each i

$$\lim_{k\to\infty} x_i^{(k)} = x_i \cdots$$
 Proof omitted.

Ex: Sequence
$$\{\mathbf{x}^{(k)}\}$$
, $\mathbf{x}^{(k)} = \begin{pmatrix} 1 \\ 1/k \\ \sin(k)/k^2 \end{pmatrix}$, converges to $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Matrix Norm

A MATRIX NORM on $\mathbb{R}^{n\times n}$ is a function, $\|\cdot\|$, from $\mathbb{R}^{n\times n}$ into \mathbb{R} with the following properties:

- (i) $||A|| \ge 0$ for all $A \in \mathbb{R}^{n \times n}$,
- (ii) ||A|| = 0 if and only if $A = \mathbf{0} \in \mathbb{R}^{n \times n}$,
- (iii) $\|\alpha A\| = |\alpha| \|A\|$ for all $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$,
- (iv) $||A + B|| \le ||A|| + ||B||$ for all $A, B \in \mathbb{R}^{n \times n}$,
- (v) $||AB|| \le ||A|| \, ||B||$ for all $A, B \in \mathbb{R}^{n \times n}$.

Matrix Norm

A MATRIX NORM on $\mathbb{R}^{n\times n}$ is a function, $\|\cdot\|$, from $\mathbb{R}^{n\times n}$ into \mathbb{R} with the following properties:

- (i) $||A|| \geq 0$ for all $A \in \mathbb{R}^{n \times n}$,
- (ii) ||A|| = 0 if and only if $A = \mathbf{0} \in \mathbb{R}^{n \times n}$,
- (iii) $\|\alpha A\| = |\alpha| \|A\|$ for all $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$,
- (iv) $||A + B|| \le ||A|| + ||B||$ for all $A, B \in \mathbb{R}^{n \times n}$,
- (v) $||AB|| \le ||A|| \, ||B||$ for all $A, B \in \mathbb{R}^{n \times n}$.

NATURAL NORM **Thm**: If $\|\cdot\|$ is a vector norm on \mathbb{R}^n , then

$$\|A\| \stackrel{\textit{def}}{=} \max_{\mathbf{z} \neq \mathbf{0}} \frac{\|A\mathbf{z}\|}{\|\mathbf{z}\|}$$

Matrix Norm

A MATRIX NORM on $\mathbb{R}^{n \times n}$ is a function, $\|\cdot\|$, from $\mathbb{R}^{n \times n}$ into \mathbb{R} with the following properties:

- (i) $||A|| \ge 0$ for all $A \in \mathbb{R}^{n \times n}$,
- (ii) ||A|| = 0 if and only if $A = \mathbf{0} \in \mathbb{R}^{n \times n}$,
- (iii) $\|\alpha A\| = |\alpha| \|A\|$ for all $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$,
- (iv) $||A + B|| \le ||A|| + ||B||$ for all $A, B \in \mathbb{R}^{n \times n}$,
- (v) $||AB|| \le ||A|| \, ||B||$ for all $A, B \in \mathbb{R}^{n \times n}$.

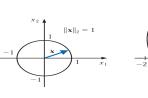
NATURAL NORM **Thm**: If $\|\cdot\|$ is a vector norm on \mathbb{R}^n , then

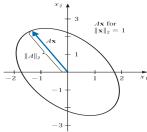
$$||A|| \stackrel{\text{def}}{=} \max_{\mathbf{z} \neq 0} \frac{||A\mathbf{z}||}{||\mathbf{z}||} \left(= \max_{||\mathbf{z}|| = 1} ||Az||\right)$$

is a matrix norm.

Matrix 2-norm and
$$\infty$$
-norm, $A = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$

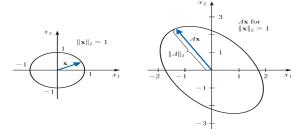
► Matrix 2-norm: $||A||_2 \stackrel{\text{def}}{=} \max_{||\mathbf{z}||_2=1} ||Az||_2$



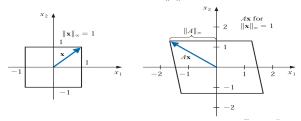


Matrix 2-norm and ∞ -norm, $A = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$

► Matrix 2-norm: $||A||_2 \stackrel{\text{def}}{=} \max_{||\mathbf{z}||_2=1} ||Az||_2$



► Matrix ∞ -norm: $||A||_{\infty} \stackrel{def}{=} \max_{||\mathbf{z}||_{\infty}=1} ||Az||_{\infty}$



Thm: Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ then $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$

Thm: Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ then $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$

Proof (Part I): Partition and define

$$A = \begin{pmatrix} \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_n^T \end{pmatrix}, \quad \mathbf{z} = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix},$$

and $\|\mathbf{a}_i\|_1 = \sum_{i=1}^n |a_{ij}|$ for $1 \leq i \leq n$. Then

$$A\mathbf{z} = \begin{pmatrix} \mathbf{a_1'} & \mathbf{z} \\ \vdots \\ \mathbf{a_n^T} & \mathbf{z} \end{pmatrix}, \text{ therefore }$$

$$\begin{aligned} \left\| A \mathbf{z} \right\|_{\infty} &= \left\| \mathbf{max}_{1 \leq i \leq n} \left| \mathbf{a}_{i}^{T} \mathbf{z} \right| \\ &\leq \left\| \mathbf{max}_{1 \leq i \leq n} \left\| \mathbf{a}_{i} \right\|_{1} \left\| \mathbf{z} \right\|_{\infty} = \left(\mathbf{max}_{1 \leq i \leq n} \sum_{i=1}^{n} \left| a_{ij} \right| \right) \left\| \mathbf{z} \right\|_{\infty}. \end{aligned}$$

It follows that $\|A\|_\infty \leq \max_{1\leq i\leq n} \sum_{j=1}^n |a_{ij}|$.

Thm: Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ then $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$

Thm: Let
$$A = (a_{ij}) \in \mathbb{R}^{n \times n}$$
 then $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$

Proof (Part II): Let

$$\sum_{j=1}^n |a_{i,j}| = \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}|$$

and $\mathbf{z} = \mathbf{sign}(\mathbf{a}_i)$. Then $\|\mathbf{z}\|_{\infty} = 1$, and

$$\begin{aligned} \|A\mathbf{z}\|_{\infty} & \geq & \left|\mathbf{a}_{i}^{T}\mathbf{z}\right| = \|\mathbf{a}_{i}\|_{1} \\ & = & \max_{1 \leq i \leq n} \sum_{i=1}^{n} |a_{ij}|. \end{aligned}$$

Put together

$$\max\nolimits_{1 \leq i \leq n} \sum_{i=1}^{n} \left| a_{ij} \right| \leq \left\| A \right\|_{\infty} \leq \max\nolimits_{1 \leq i \leq n} \sum_{i=1}^{n} \left| a_{ij} \right|.$$

Example: Matrix
$$\infty$$
-norm, $A = \begin{pmatrix} 1 & -2 & 3 \\ 1 & 1 & 1 \\ -2 & 1 & 0 \end{pmatrix}$.

$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \text{ and } \|\mathbf{a}_1\|_1 = 6,$$

$$\mathbf{a}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, and $\|\mathbf{a}_2\|_1 = 3$,

$$lackbox{\textbf{a}}_3=\left(egin{array}{c} -2 \ 1 \ 0 \end{array}
ight)$$
, and $\left\| m{a}_3
ight\|_1=3$,

$$||A||_{\infty} = \max(6,3,3) = 6.$$

§7.2 Eigenvalues and Eigenvectors

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix.

▶ The CHARACTERISTIC POLYNOMIAL of *A* is defined by

$$p(\lambda) = \det(A - \lambda I).$$

▶ The EIGENVALUES of A are those values of λ such that

$$p(\lambda) = 0$$
,

i.e., those values of λ such that the matrix $A - \lambda I$ is singular.

▶ For any eigenvalue λ , its EIGENVECTOR \mathbf{x} is any non-zero vector such that

$$(A - \lambda I) \mathbf{x} = 0.$$

Ex: Eigenvalues/Eigenvectors of
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & -1 & 4 \end{pmatrix}$$
.

ightharpoonup The CHARACTERISTIC POLYNOMIAL of A is

$$p(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} 2 - \lambda & 0 & 0 \\ 1 & 1 - \lambda & 2 \\ 1 & -1 & 4 - \lambda \end{pmatrix}$$
$$= (2 - \lambda) \det\begin{pmatrix} 1 - \lambda & 2 \\ -1 & 4 - \lambda \end{pmatrix} \neq 2 - \lambda) (\lambda^2 - 5\lambda + 6)$$
$$= -(\lambda - 2)^2 (\lambda - 3).$$

▶ For eigenvalue $\lambda_1 = 3$, its EIGENVECTOR \mathbf{x}_1 satisfies

$$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 1 & -2 & 2 \\ 1 & -1 & 1 \end{array}\right)\mathbf{x}_1=0, \quad \text{implying} \quad \mathbf{x}_1=\left(\begin{array}{c} 0 \\ \xi \\ \xi \end{array}\right) \quad \text{for } \xi\neq 0.$$

Ex: Eigenvalues/Eigenvectors of
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & -1 & 4 \end{pmatrix}$$
.

▶ For double eigenvalue $\lambda_2=2$, its <code>EIGENVECTOR</code> \mathbf{x}_2 satisfies

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 2 \\ 1 & -1 & 2 \end{pmatrix} \mathbf{x}_2 = 0, \quad \text{i.e.,} \quad \mathbf{x}_2 = \alpha \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \neq 0.$$

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix.

► The Spectral Radius of A is defined by

$$\rho(A) \stackrel{\text{def}}{=} \max\{|\lambda| \mid \lambda \text{ is an eigenvalue of } A.\}$$

- ► Thm:
 - $\|A\|_2 = (\rho (A^T A))^{\frac{1}{2}}.$
 - $\rho(A) \leq |A|$ for any natural norm $||\cdot||$.

Ex: Find 2-norm of
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

$$\|A\|_2 = \left(\rho\left(A^T A\right)\right)^{\frac{1}{2}}.$$

Ex: Find 2-norm of
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

$$||A||_2 = \left(\rho\left(A^T A\right)\right)^{\frac{1}{2}}.$$

Calculating,
$$A^T A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 2 & -1 \\ 2 & 6 & 4 \\ -1 & 4 & 5 \end{pmatrix}$$
,

Ex: Find 2-norm of
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

$$\|A\|_2 = \left(\rho\left(A^T A\right)\right)^{\frac{1}{2}}.$$

Calculating,
$$A^T A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 2 & -1 \\ 2 & 6 & 4 \\ -1 & 4 & 5 \end{pmatrix},$$

and
$$\det \left(A^T A - \lambda I \right) = \det \begin{pmatrix} 3 - \lambda & 2 & -1 \\ 2 & 6 - \lambda & 4 \\ -1 & 4 & 5 - \lambda \end{pmatrix}$$
$$= -\lambda^3 + 14 \lambda^2 - 42 \lambda.$$

Ex: Find 2—norm of
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

$$\|A\|_2 = \left(\rho\left(A^T A\right)\right)^{\frac{1}{2}}.$$

Calculating,
$$A^T A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 2 & -1 \\ 2 & 6 & 4 \\ -1 & 4 & 5 \end{pmatrix}$$
,

and
$$\det \left(A^T A - \lambda I \right) = \det \begin{pmatrix} 3 - \lambda & 2 & -1 \\ 2 & 6 - \lambda & 4 \\ -1 & 4 & 5 - \lambda \end{pmatrix}$$
$$= -\lambda^3 + 14 \lambda^2 - 42 \lambda.$$

Setting **det** $(A^T A - \lambda I) = 0$ leads to $\lambda = 0, 7 \pm \sqrt{7}$. Thus

$$\|A\|_2 = \sqrt{\max\left\{0, 7 - \sqrt{7}, 7 + \sqrt{7}\right\}} = \sqrt{7 + \sqrt{7}}.$$

Convergent Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is CONVERGENT if

$$\lim_{k \to \infty} \left(A^k \right)_{i,j} = 0, \quad \text{for all } 1 \le i, j \le n.$$

Convergent Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is CONVERGENT if

$$\lim_{k\to\infty} \left(A^k\right)_{i,j} = 0, \quad ext{for all } 1 \leq i,j \leq n.$$

Ex: Show that

$$A = \begin{pmatrix} \frac{1}{2} & 0 \\ 5 & \frac{1}{2} \end{pmatrix}$$
 is a convergent matrix.

Solution: Easy to verify that

$$A^{2} = \begin{pmatrix} \frac{1}{2^{2}} & 0\\ \frac{20}{2^{2}} & \frac{1}{2^{2}} \end{pmatrix}, \quad A^{k} = \begin{pmatrix} \frac{1}{2^{k}} & 0\\ \frac{10}{2^{k}} & \frac{1}{2^{k}} \end{pmatrix} \quad \text{for all } k \ge 1.$$

Thm: The following statements are equivalent

- (i) $A \in \mathbb{R}^{n \times n}$ is a convergent matrix,
- (ii) $\lim_{k\to\infty} ||A^k|| = 0$ for some natural norm,
- (iii) $\lim_{k\to\infty} \|A^k\| = 0$ for all natural norms,
- (iv) $\rho(A) < 1$,
- (v) $\lim_{k\to\infty} A^k \mathbf{x} = 0$ for every $\mathbf{x} \in \mathbb{R}^n$.

§7.3 The Jacobi and Gauss-Siedel Iterative Techniques

- **Problem:** To solve $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbb{R}^{n \times n}$.
- ▶ **Methodology:** Iteratively approximate solution **x**. No GEPP.

§7.3 The Jacobi and Gauss-Siedel Iterative Techniques

- **Problem:** To solve $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbb{R}^{n \times n}$.
- Methodology: Iteratively approximate solution x. No GEPP.

MATRIX SPLITTING
$$A = \operatorname{diag}(a_{1,1}, a_{2,2}, \dots, a_{n,n}) + \begin{pmatrix} 0 \\ a_{2,1} & 0 \\ \vdots & \vdots & \ddots \\ a_{n-1,1} & a_{n-1,2} & \cdots & 0 \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n-1} & 0 \end{pmatrix}$$

$$+ \left(\begin{array}{ccccc} 0 & a_{1,2} & \cdots & a_{1,n-1} & a_{1,n} \\ & 0 & \cdots & a_{2,n-1} & a_{2,n} \\ & & \ddots & \vdots & \vdots \\ & & 0 & a_{n-1,n} \\ & & & 0 \end{array}\right)$$

§7.3 The Jacobi and Gauss-Siedel Iterative Techniques

- **Problem:** To solve $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbb{R}^{n \times n}$.

$$A = diag(a_{1,1}, a_{2,2}, \cdots, a_{n,n}) +$$

Methodology: Iteratively approximate solution
$$\mathbf{x}$$
. No GEPP.

MATRIX SPLITTING
$$A = \mathbf{diag}(a_{1,1}, a_{2,2}, \cdots, a_{n,n}) + \begin{pmatrix} 0 & & & \\ a_{2,1} & 0 & & \\ \vdots & \vdots & \ddots & \\ a_{n-1,1} & a_{n-1,2} & \cdots & 0 \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n-1} & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & a_{1,2} & \cdots & a_{1,n-1} & a_{1,n} \end{pmatrix}$$

$$+ \begin{pmatrix} 0 & a_{1,2} & \cdots & a_{1,n-1} & a_{1,n} \\ & 0 & \cdots & a_{2,n-1} & a_{2,n} \\ & & \ddots & \vdots & \vdots \\ & & 0 & a_{n-1,n} \\ & & & 0 \end{pmatrix}$$

$$\stackrel{\text{def}}{=} D - L - U = \left(\begin{array}{c} \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \end{array} \right).$$

Ex: Matrix splitting for
$$A = \begin{pmatrix} 10 & -1 & 2 & 0 \\ -1 & 11 & -1 & 3 \\ 2 & -1 & 10 & -1 \\ 0 & 3 & -1 & 8 \end{pmatrix}$$

$$A = \begin{pmatrix} & & & \\ & & &$$

The Jacobi and Gauss-Siedel Methods for solving $A\mathbf{x} = \mathbf{b}$

Jacobi Method: With matrix splitting A = D - L - U, rewrite

$$\mathbf{x} = D^{-1} (L + U) \mathbf{x} + D^{-1} \mathbf{b}.$$

Jacobi iteration with given $\mathbf{x}^{(0)}$,

$$\mathbf{x}^{(k+1)} = D^{-1} (L+U) \mathbf{x}^{(k)} + D^{-1} \mathbf{b}, \text{ for } k = 0, 1, 2, \cdots.$$

The Jacobi and Gauss-Siedel Methods for solving $A\mathbf{x} = \mathbf{b}$

Jacobi Method: With matrix splitting A = D - L - U, rewrite

$$\mathbf{x} = D^{-1} (L + U) \mathbf{x} + D^{-1} \mathbf{b}.$$

Jacobi iteration with given $\mathbf{x}^{(0)}$,

$$\mathbf{x}^{(k+1)} = D^{-1} (L + U) \mathbf{x}^{(k)} + D^{-1} \mathbf{b}, \text{ for } k = 0, 1, 2, \cdots.$$

Gauss-Siedel Method: Rewrite

$$\mathbf{x} = (D - L)^{-1} U \mathbf{x} + (D - L)^{-1} \mathbf{b}.$$

Gauss-Siedel iteration with given $\mathbf{x}^{(0)}$,

$$\mathbf{x}^{(k+1)} = (D-L)^{-1} U \mathbf{x}^{(k)} + (D-L)^{-1} \mathbf{b}$$
, for $k = 0, 1, 2, \cdots$.

Ex: Jacobi Method for $A\mathbf{x} = \mathbf{b}$, with

$$A = \begin{pmatrix} 10 & -1 & 2 & 0 \\ -1 & 11 & -1 & 3 \\ 2 & -1 & 10 & -1 \\ 0 & 3 & -1 & 8 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 6 \\ 25 \\ -11 \\ 15 \end{pmatrix}$$

$$A = D - L - U$$

$$A = D - L - U$$

$$= \operatorname{diag}(10, 11, 10, 8) - \begin{pmatrix} 0 & & & \\ 1 & 0 & & \\ -2 & 1 & 0 & \\ 0 & -3 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 & -2 & 0 \\ 0 & 1 & -3 \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}$$

Ex: Jacobi Method for Ax = b, with

$$A = \begin{pmatrix} 10 & -1 & 2 & 0 \\ -1 & 11 & -1 & 3 \\ 2 & -1 & 10 & -1 \\ 0 & 3 & -1 & 8 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 6 \\ 25 \\ -11 \\ 15 \end{pmatrix}$$

$$A = D - L - U$$

$$A = D - L - U$$

$$= \mathbf{diag}(10,11,10,8) - \begin{pmatrix} 0 & & & \\ 1 & 0 & & \\ -2 & 1 & 0 & \\ 0 & 3 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 & -2 & 0 \\ 0 & 1 & -3 \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}$$

iteration with
$$\mathbf{x}^{(0)}$$

Jacobi iteration with
$$\mathbf{x}^{(0)} = \mathbf{0}$$
, for $k = 0, 1$
$$\mathbf{x}_{\mathbf{l}}^{(k+1)} = D^{-1} (L+U) \mathbf{x}_{\mathbf{l}}^{(k)} + D^{-1} \mathbf{b}$$

$$= \operatorname{diag}(10, 11, 10, 8) - \begin{pmatrix} 1 & 0 \\ -2 & 1 & 0 \\ 0 & -3 & 1 & 0 \end{pmatrix}$$
Jacobi iteration with $\mathbf{x}^{(0)} = \mathbf{0}$, for $k = 0, 1, 2, \cdots$

$$\begin{bmatrix} 0 \\ 3 & 1 & 0 \end{bmatrix}$$

 $= \begin{pmatrix} 0 & \frac{1}{10} & -\frac{2}{10} & 0\\ \frac{1}{11} & 0 & \frac{1}{11} & -\frac{3}{11}\\ -\frac{2}{10} & \frac{1}{10} & 0 & \frac{1}{10}\\ 0 & -\frac{3}{2} & \frac{1}{2} & 0 \end{pmatrix} \mathbf{x}_{\mathbf{J}}^{(k)} + \begin{pmatrix} \frac{1}{10} \\ \frac{25}{11} \\ -\frac{1}{10} \\ \frac{15}{8} \end{pmatrix}$

Ex: Gauss-Siedel Method for Ax = b

$$A = D - L - U$$

$$= \begin{pmatrix} 10 & & & \\ -1 & 11 & & \\ 2 & -1 & 10 & \\ 0 & 3 & -1 & 8 \end{pmatrix} - \begin{pmatrix} 0 & 1 & -2 & 0 \\ & 0 & 1 & -3 \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}.$$

Ex: Gauss-Siedel Method for Ax = b

$$A = D - L - U$$

$$= \begin{pmatrix} 10 & & & \\ -1 & 11 & & \\ 2 & -1 & 10 & \\ 0 & 3 & -1 & 8 \end{pmatrix} - \begin{pmatrix} 0 & 1 & -2 & 0 \\ & 0 & 1 & -3 \\ & & 0 & 1 \\ & & & 0 \end{pmatrix} .$$

Gauss-Siedel iteration with $\mathbf{x}^{(0)} = \mathbf{0}$, for $k = 0, 1, 2, \cdots$

$$\mathbf{x}_{\mathsf{GS}}^{(k+1)} = (D-L)^{-1} U \mathbf{x}_{\mathsf{GS}} + (D-L)^{-1} \mathbf{b}$$

$$= \begin{pmatrix} 10 & & & \\ -1 & 11 & & \\ 2 & -1 & 10 & \\ 0 & 3 & -1 & 8 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 & -2 & 0 \\ & 0 & 1 & -3 \\ & & 0 & 1 \\ & & & 0 \end{pmatrix} \mathbf{x}_{\mathsf{GS}}^{(k)}$$

$$+ \begin{pmatrix} \frac{6}{10} \\ \frac{25}{11} \\ -\frac{1}{16} \\ \frac{1}{16} \end{pmatrix}.$$

General Iteration Methods

To solve $A \mathbf{x} = \mathbf{b}$ with matrix splitting A = D - L - U,

► Jacobi Method:

$$\mathbf{x}_{\mathbf{J}}^{(k+1)} = D^{-1} (L + U) \mathbf{x}_{\mathbf{J}}^{(k)} + D^{-1} \mathbf{b}.$$

► Gauss-Siedel Method:

$$\mathbf{x}_{GS}^{(k+1)} = (D-L)^{-1} U \mathbf{x}_{GS}^{(k)} + (D-L)^{-1} \mathbf{b}.$$

General Iteration Method: for $k = 0, 1, 2, \cdots$

$$\mathbf{x}^{(k+1)} = T \, \mathbf{x}^{(k)} + \mathbf{c}.$$

Next: convergence analysis on General Iteration Method

General Iteration:
$$\mathbf{x}^{(k+1)} = T \mathbf{x}^{(k)} + \mathbf{c}$$
 for $k = 0, 1, 2, \cdots$

Thm: The following statements are equivalent

- ▶ $\rho(T) < 1$.
- ► The equation

$$\mathbf{x} = T \, \mathbf{x} + \mathbf{c} \qquad (1)$$

has a unique solution and $\{\mathbf{x}^{(k)}\}$ converges to this solution from any $\mathbf{x}^{(0)}$.

General Iteration:
$$\mathbf{x}^{(k+1)} = T \mathbf{x}^{(k)} + \mathbf{c}$$
 for $k = 0, 1, 2, \cdots$

Thm: The following statements are equivalent

- ▶ $\rho(T) < 1$.
- ► The equation

$$\mathbf{x} = T \, \mathbf{x} + \mathbf{c} \qquad (1)$$

has a unique solution and $\{\mathbf{x}^{(k)}\}$ converges to this solution from any $\mathbf{x}^{(0)}$.

Proof: Assume $\rho(T) < 1$. Then (1) has unique solution $\mathbf{x}^{(*)}$.

$$\mathbf{x}^{(k+1)} - \mathbf{x}^{(*)} = T \left(\mathbf{x}^{(k)} - \mathbf{x}^{(*)} \right) = T^2 \left(\mathbf{x}^{(k-1)} - \mathbf{x}^{(*)} \right)$$
$$= \cdots = T^{k+1} \left(\mathbf{x}^{(0)} - \mathbf{x}^{(*)} \right) \Longrightarrow \mathbf{0}.$$

Conversely, if · · · (omitted)