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Lanczos Iteration Algorithm

Developed by Lanczos in 1950 [Lan50].

Widely used iterative algorithm for computing the extremal eigenvalues
and corresponding eigenvectors of a large, sparse, symmetric matrix A.

Goal

Given a symmetric matrix A ∈ Rn×n, with eigenvalues λ1 > λ2 > · · · > λn
and associated eigenvectors u1, · · · ,un, want to find approximations for

λi , i = 1, · · · , k , the k largest eigenvalues of A

ui , i = 1, · · · , k , the associated eigenvectors

where k � n.
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Lanczos - Details

General idea:

1 Select an initial vector v.

2 Construct Krylov subspace
K (A, v, k) = span{v,Av,A2v, · · · ,Ak−1v}.

3 Restrict and project A to the Krylov subspace, T = projKA|K
4 Use eigen values and vectors of T as approximations to those of A.

In matrices:

Kk =
[
v Av · · · Ak−1v

]
∈ Rn×k

Qk =
[
q1 q2 · · · qk

]
← qr (Kk)

Tk = QT
k AQk ∈ Rk×k
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Lanczos - Details

A
[
q1 · · · qj

]
=
[

q1 · · · qj qj+1

]

α1 β1

β1
. . .

. . .
. . .

. . . βj−1

βj−1 αj

βj


At each step j = 1, · · · , k of Lanczos iteration:

AQj = QjTj + βjqj+1eTj+1

Use the three-term recurrence:

Aqj = βj−1qj−1 + αjqj + βjqj+1

Calculate the αs, βs as:

αj = qT
j Aqj (1)

rj = (A− αj I) qj − βj−1qj (2)

βj = ‖rj‖2, qj+1 = rj/βj (3)
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Convergence of Lanczos

How well does λ
(k)
i , the eigenvalues of Tk , approximate λi , the

eigenvalues of A, for i = 1, · · · , k?

First answered by Kaniel in 1966 [Kan66] and Paige in 1971 [Pai71].

Theorem (Kaniel-Paige Inequality)

If v is chosen to be not orthogonal to the eigenspace associated with λ1,
then

0 ≤ λ1 − λ(k)
1 ≤ (λ1 − λn)

tan2 θ (u1, v)

T 2
k−1 (γ1)

(4)

where Ti (x) is the Chebyshev polynomial of degree i , θ (·, ·) is the angle
between two vectors, and

γ1 = 1 + 2
λ1 − λ2

λ2 − λn
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Convergence of Lanczos

Later generalized by Saad in 1980 [Saa80].

Theorem (Saad Inequality)

For i = 1, · · · , k, if v is chosen such that uT
i v 6= 0, then

0 ≤ λi − λ
(k)
i ≤ (λi − λn)

(
L

(k)
i tan θ (ui , v)

Tk−i (γi )

)2

(5)

where Ti (x) is the Chebyshev polynomial of degree i , θ (·, ·) is the angle
between two vectors, and

γi = 1 + 2
λi − λi+1

λi+1 − λn

L
(k)
i =


∏i−1

j=1

λ
(k)
j −λn
λ

(k)
j −λi

if i 6= 1

1 if i = 1
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Aside - Chebyshev Polynomials

Recall

Tj(x) =
1

2

((
x +

√
x2 − 1

)j
+
(
x −

√
x2 − 1

)j)
(6)

When j is large,

Tj(x) ≈ 1

2

(
x +

√
x2 − 1

)j
and when g is small,

Tj(1 + g) ≈ 1

2

(
1 + g +

√
2g
)j

determines the convergence of
Lanczos with

g = Θ

(
λi − λi+1

λi+1 − λn

)
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Block Lanczos Algorithm

Introduced by Golub and Underwood in 1977 [GU77] and Cullum and
Donath in 1974 [CD74].

The block generalization of the Lanczos method uses, instead of a single
initial vector v, a block of b vectors V =

[
v1 · · · vb

]
, and builds the

Krylov subspace in q iterations as
Kq (A,V, q) = span

{
V,AV, · · · ,Aq−1V

}
.

k ≤ b, bq � n.

Compared to classical Lanczos, block Lanczos

is more memory and cache efficient, using BLAS3 operations.

has the ability to converge to eigenvalues with cluster size > 1.

has faster convergence with respect to number of iterations.
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Block Lanczos Algorithm - Details

A
[
Q1 · · · Qj

]
=
[

Q1 · · · Qj Qj+1

]

A1 BT1
B1

. . .
. . .

. . .
. . . BTj−1

Bj−1 Aj

Bj


At each step j = 1, · · · , k of Lanczos iteration:

AQ = QTj + Qj+1

[
0 · · · 0 Bj

]
Use the three-term recurrence:

AQj = Qj−1BTj−1 + QjAj + Qj+1Bj
Calculate the As, Bs as:

Aj = QT
j AQj (7)

Qj+1Bj ← qr
(

AQj −QjAj −QjBTj−1

)
(8)
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Convergence of Block Lanczos

First analyzed by Underwood in 1975 [Und75] with the introduction of the
algorithm.

Theorem (Underwood Inequality)

Let λi , ui , i = 1, · · · , n be the eigenvalues and eigenvectors of A
respectively. Let U =

[
u1 · · · ub

]
. If UTV is of full rank b, then for

i = 1, · · · , b

0 ≤ λi − λ
(q)
i ≤ (λ1 − λn)

tan2 Θ (U,V)

T 2
q−1 (ρi )

(9)

where Ti (x) is the Chebyshev polynomial of degree i ,
cos Θ (U,V) = σmin

(
UTV

)
, and

ρi = 1 + 2
λi − λb+1

λb+1 − λn
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Convergence of Block Lanczos

Theorem (Saad Inequality [Saa80])

Let λj , uj , j = 1, · · · , n be the eigenvalues and eigenvectors of A
respectively. Let Ui =

[
ui · · · ui+b−1

]
. For i = 1, · · · , b, if UT

i V is of
full rank b, then

0 ≤ λi − λ
(q)
i ≤ (λi − λn)

(
L

(q)
i tan Θ (Ui ,V)

Tq−i (γ̂i )

)2

(10)

where Ti (x) is the Chebyshev polynomial of degree i ,
cos Θ (U,V) = σmin

(
UTV

)
, and

γ̂i = 1 + 2
λi − λi+b

λi+b − λn

L
(q)
i =


∏i−1

j=1

λ
(q)
j −λn
λ

(q)
j −λi

if i 6= 1

1 if i = 1
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Aside - Block Size

Recall, when j is large and g is small

Tj(1 + g) ≈ 1

2

(
1 + g +

√
2g
)j

(11)

classical: g = Θ

(
λi − λi+1

λi+1 − λn

)
block: gb = Θ

(
λi − λi+b

λi+b − λn

)
Suppose eigenvalue distributed as
λj > (1 + ε)λj+1 for all j :

gb ≈
1− (1 + ε)−b

(1 + ε)−b
· λi

≈ b · λiε
≈ b · g
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Randomized Block Lanczos

In recent years, there has been increased interest in algorithms to compute
low-rank approximations of matrices, with

high computational efficiency requirement, running on large matrices

low approximation accuracy requirement, 2-3 digits of accuracy

Applications mostly in big-data computations

compression of data matrices

matrix processing techniques, e.g. PCA

optimization of the nuclear norm objective function
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Randomized Block Lanczos

Grew out of work done in randomized algorithms, in particular
Randomized Subspace Iteration, by

Rokhlin, Szlam, and Tygert in 2009 [RST09]

Halko, Martinsson, and Tropp in 2011 [HMST11]

Gu [Gu15], and Musco [MM15] in 2015

Idea: Instead of taking any initial set of vectors V, an unfortunate choice
of which could result in poor convergence, choose V = AΩ, a random
projection of the columns of A, to better capture the range space.
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RSI & RBL Pseudocode

Algorithm 1 Randomized Subspace
Iteration (RSI) pseudocode

Input: A ∈ Rm×n, target rank k ,
block size b, number of iter. q

Output: Bk ∈ Rm×n , a rank-k ap-
proximation

1: Draw Ω ∈ Rn×b. ωij ∼ N (0, 1).
2: Form K = (AAT )q−1AΩ.
3: Orthogonalize qr(K)→ Q.
4: Bk = (QQTA)k = Q(QTA)k .

∗ (M)k indicates the k-truncated
SVD of matrix M.

Algorithm 2 Randomized Block
Lanczos (RBL) pseudocode

Input: A ∈ Rm×n, target rank k ,
block size b, number of iter. q

Output: Bk ∈ Rm×n, a rank-k ap-
proximation

1: Draw Ω ∈ Rn×b. ωij ∼ N (0, 1).
2: Form

K =[AΩ, (AAT )AΩ, · · · , (AAT )q−1AΩ].

3: Orthogonalize qr(K)→ Q.
4: Bk = (QQTA)k = Q(QTA)k .

∗ requires bq ≥ k .
∗∗ numerically unstable.
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Lanczos for SVD

A modification of the Lanczos algorithm can be used to find the extremal
singular value pairs of a non-symmetric matrix A ∈ Rm×n.

Utilizing the connections between the singular value decomposition of A
and the eigen decompositions of AAT and ATA,

1 Select a block of initial vectors V =
[
v1 · · · vb

]
.

2 Construct Krylov subspaces KV

(
ATA,V, q

)
and KU

(
AAT ,AV, q

)
.

3 Restrict and project A to form B = projKU
A|KV

4 Use singular values and vectors of B as approximations to those of A.
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Golub-Kahan Bidiagonalization [GK65]

A
[
V1 · · · Vj

]
=
[

U1 · · · Uj

]

A1 BT1

. . .
. . .
. . . BTj−1

Aj



AT
[
U1 · · · Uj

]
=
[

V1 · · · Vj Vj+1

]

A1

B1
. . .
. . .

. . .

Bj−1 Aj

Bj


At each step j = 1, · · · , k of the bidiagonalization, calculate As and Bs as:

UjAj ← qr
(

AVj −Uj−1BTj−1

)
(12)

Vj+1Bj ← qr
(

ATUj − VjAj

)
(13)
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Convergence of RBL

Analyzed by Musco and Musco in 2015 [MM15].

Theorem

For block size b ≥ k, in q = Θ
(

log n
ε

)
iterations of RSI and q = Θ

(
log n√
ε

)
iterations of RBL, with constant probability 99/100, the following
inequalities bounds are satisfied:

|σ2
i − σ2

i (Bk)| ≤ εσ2
k+1, , for i = 1, · · · , k (14)

In the event that σb+1 ≤ cσk with c < 1, taking q = Θ
(

log(n/ε)
min(1,σk/σb+1−1)

)
and q = Θ

(
log(n/ε)√

min(1,σk/σb+1−1)

)
suffices for RSI and RBL respectively.
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Aside: Convergence of RSI

Many of our analysis techniques are similar to those used by Gu to analyze
RSI [Gu15]. The bounds for RBL resulting from the current work will be
similar in form to the bounds for RSI.

Theorem (RSI convergence)

Let Bk be the approximation returned by the RSI algorithm on
A = UΣVT , with target rank k, block size b ≥ k, and q iterations. If Ω̂1

has full row rank in VTΩ =
[
Ω̂T

1 Ω̂T
2

]T
, then

σj ≥ σj (Bk) ≥
σj√

1 + ‖Ω̂2‖2
2‖Ω̂

†
1‖2

2

(
σb+1

σj

)4q+2
(15)
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Current Work - Core Ideas

The core pieces of our analysis are:

1 the growth behavior of Chebyshev polynomials,

2 the choice of a clever orthonormal basis for Krylov subspace,

3 the creation of a spectrum “gap”, by separating the spectrum of A
into those singular values that are “close” to σk , and those that are
sufficiently smaller in magnitude.
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Setup & Notation

For block size b, random Gaussian matrix Ω ∈ Rn×b, we are interested in
the column span of

Kq =
[
AΩ

(
AAT

)
AΩ · · ·

(
AAT

)q−1
AΩ
]

Let the SVD of A ∈ Rm×n be UΣVT . For any 0 ≤ p ≤ q, define

K̂p : = UT2p+1(Σ)
[
Ω̂ Σ2Ω̂ · · · Σ2(q−p−1)Ω̂

]
= UT2p+1(Σ)Vq−p

Note Vq−p ∈ Rn×b(q−p). We require b(q − p) ≥ k , the target rank.

Lemma

With K̂p and Kq as previously defined,

span {Kq} ⊇ span
{

K̂p

}
(16)
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Convergence of RBL

Theorem (Main Result)

Let Bk be the approximation returned by the RBL algorithm. With
notation as previously defined, if the random starting Ω is initialized such
that the block Vandermonde formed by the sub-blocks of Vq−p is
invertible, then for all 1 ≤ j ≤ k, and all choicesa of s, r ,

σj ≥ σj(Bk) ≥
σj+s√

1 + C2T−2
2p+1

(
1 + 2 · σj−σj+s+r+1

σj+s+r+1

) (17)

where p = q − k+r
b , and C is a constant independent of q.

as is chosen to be non-zero to handle multiple singular values, and can be
set to zero otherwise.
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Summary of Convergence Bounds

Rewriting bounds in comparable forms:
citation bound req. on b

Saad [Saa80] λ
(q)
j ≥ λj

1+L
(q)
j

2
tan2 Θ(U,V)T−2

q−j

(
1+2

λj−λj+b
λj+b

) b ≥ k

Musco [MM15]
spec. indep.

σ
(q)
j ≥ σj√

1+C2
1 log2(n) q−2

σ2
k+1

σ2
j

b ≥ k

Musco [MM15]
spec. dep.

σ
(q)
j ≥ σj√

1+C2ne
−q
√

min(1,σk/σb+1−1) σ
2
k+1

σ2
j

b ≥ k

Current Work σ
(q)
j ≥ σj√

1+C2
3T

−2
2q+1−2(k+r)/b

(
1+2

σj−σj+r+1
σj+r+1

) b ≥ 1
bq ≥ k + r
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Typical Case - Superlinear Convergence

Recall: {aq} convergence superlinearly to a if

lim
q→∞

|aq+1 − a|
|aq − a|

= 0 (18)

In practice, Lanczos algorithms (classical, block, randomized) often
exhibit superlinear convergence behavior.

It has been shown that classical Lanczos iteration is theoretically
superlinearly convergent under certain assumptions about the singular
spectrum [saa94, Li10].

We show this for block Lanczos algorithms, i.e., that under certain
assumptions about the singular spectrum, block Lanczos produces
rank k approximations Bk such that σj(Bk)→ σj superlinearly.

Qiaochu Yuan Tour of Lanczos April 17, 2018 34 / 43



Typical Case - Superlinear Convergence

A typical data matrix might have singular value spectrum decaying to 0,
i.e., σj → 0. In this case our bound suggests that convergence is governed
by

aq :=
(
C(r)T−1

p (1 + g)
)2 ≈

(
C(r) · 1

2

(
1 + g +

√
2g
)−p)2

→ 0

with

g = 2
σj − σj+r+1

σj+r+1
= 2

(
σj

σj+r+1
− 1

)
→∞

p = 2

(
q − k + r

b

)
+ 1 = 2q +

(
1− 2

k + r

b

)
We argue that aq+1/aq → 0 as follows: for all ε > 0, choose1 r so that

1 + g ≥ ε−
1
2 . Then,

aq+1

aq
≤ ε

1Recall 1) our main result holds for all r ; 2) k + r = (q − p)b, and so choosing r
amounts to choosing q.
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Effect of r

There is some optimal value of r , typically non-zero, which achieves the
best convergence factor. The balance is between larger (smaller) values of
r , which implies lower (higher) Chebyshev degree but bigger (smaller) gap.

Figure: Value of reciprocal convergence factor T−1
2q+1−2((k+r)/b)

(
1 + 2

σj−σj+r+1

σj+r+1

)
as r varies, for Daily Activities and Sports Dataset, k = j = 100, b = 10, q = 20.
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Numerical Example

Experimentally, choices of smaller block sizes 1 ≤ b < k appear favorable
with superlinear convergence for all block sizes.

Figure: Daily Activities and Sports Dataset - A ∈ R9120×5625.
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Numerical Example

Figure: Eigenfaces Dataset - A ∈ R10304×400.
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Conclusions

Both the theoretical analysis and numerical evidence suggest that,
holding the number of matrix vector operations constant, RBL with
smaller block size b is better.

For matrices with decaying spectrum, RBL achieves superlinear
convergence.

However the preference for smaller b must be balanced with the
advantages of a larger b for computational efficiency and numerical
stability reasons in a practical implementation, and should be further
investigated.
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