A Tour of the Lanczos Algorithm and its Convergence Guarantees through the Decades

Qiaochu Yuan

Department of Mathematics UC Berkeley

Joint work with Prof. Ming Gu, Bo Li

April 17, 2018

Qiaochu Yuan

April 17, 2018 3 / 43

Developed by Lanczos in 1950 [Lan50].

Widely used iterative algorithm for computing the extremal eigenvalues and corresponding eigenvectors of a large, sparse, symmetric matrix A.

Goal

Given a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, with eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_n$ and associated eigenvectors $\mathbf{u}_1, \cdots, \mathbf{u}_n$, want to find approximations for

- λ_i , $i = 1, \dots, k$, the k largest eigenvalues of **A**
- \mathbf{u}_i , $i = 1, \cdots, k$, the associated eigenvectors

where $k \ll n$.

General idea:

- Select an initial vector v.
- **2** Construct Krylov subspace $\mathcal{K}(\mathbf{A}, \mathbf{v}, k) = \operatorname{span}\{\mathbf{v}, \mathbf{A}\mathbf{v}, \mathbf{A}^2\mathbf{v}, \cdots, \mathbf{A}^{k-1}\mathbf{v}\}.$
- ${\color{black} {0 \!\!\! 0 \!\!\! 0 \!\!\! 0 \!\!\! 0 \!\!\! }}$ Restrict and project ${\color{black} {A}}$ to the Krylov subspace, ${\color{black} {T = {proj}_{\mathcal K} {A}}}|_{\mathcal K}$
- Use eigen values and vectors of T as approximations to those of A.

In matrices:

$$\begin{split} \mathbf{K}_{k} &= \begin{bmatrix} \mathbf{v} & \mathbf{A}\mathbf{v} & \cdots & \mathbf{A}^{k-1}\mathbf{v} \end{bmatrix} \in \mathbb{R}^{n \times k} \\ \mathbf{Q}_{k} &= \begin{bmatrix} \mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{k} \end{bmatrix} \leftarrow \operatorname{qr}\left(\mathbf{K}_{k}\right) \\ \mathbf{T}_{k} &= \mathbf{Q}_{k}^{T} \mathbf{A} \mathbf{Q}_{k} \in \mathbb{R}^{k \times k} \end{split}$$

At each step $j = 1, \dots, k$ of Lanczos iteration:

$$\mathbf{A}\mathbf{Q}_j = \mathbf{Q}_j\mathbf{T}_j + \beta_j\mathbf{q}_{j+1}\mathbf{e}_{j+1}^T$$

Use the three-term recurrence:

$$\mathbf{A}\mathbf{q}_j = \beta_{j-1}\mathbf{q}_{j-1} + \alpha_j\mathbf{q}_j + \beta_j\mathbf{q}_{j+1}$$

Calculate the α s, β s as:

$$\alpha_{j} = \mathbf{q}_{j}^{T} \mathbf{A} \mathbf{q}_{j}$$
(1)
$$\mathbf{r}_{j} = (\mathbf{A} - \alpha_{j} \mathbf{I}) \mathbf{q}_{j} - \beta_{j-1} \mathbf{q}_{j}$$
(2)
$$\beta_{j} = \|\mathbf{r}_{j}\|_{2}, \ \mathbf{q}_{j+1} = \mathbf{r}_{j} / \beta_{j}$$
(3)

Convergence of Lanczos

How well does $\lambda_i^{(k)}$, the eigenvalues of \mathbf{T}_k , approximate λ_i , the eigenvalues of \mathbf{A} , for $i = 1, \dots, k$?

First answered by Kaniel in 1966 [Kan66] and Paige in 1971 [Pai71].

Theorem (Kaniel-Paige Inequality)

If ${\bf v}$ is chosen to be not orthogonal to the eigenspace associated with $\lambda_1,$ then

$$0 \leq \lambda_1 - \lambda_1^{(k)} \leq (\lambda_1 - \lambda_n) \frac{\tan^2 \theta \left(\mathbf{u}_1, \mathbf{v} \right)}{T_{k-1}^2 \left(\gamma_1 \right)} \tag{4}$$

where $T_i(x)$ is the Chebyshev polynomial of degree *i*, $\theta(\cdot, \cdot)$ is the angle between two vectors, and

$$\gamma_1 = 1 + 2\frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_n}$$

Convergence of Lanczos

Later generalized by Saad in 1980 [Saa80].

Theorem (Saad Inequality)

For $i = 1, \dots, k$, if **v** is chosen such that $\mathbf{u}_i^T \mathbf{v} \neq 0$, then

$$0 \le \lambda_i - \lambda_i^{(k)} \le (\lambda_i - \lambda_n) \left(\frac{L_i^{(k)} \tan \theta \left(\mathbf{u}_i, \mathbf{v} \right)}{T_{k-i} \left(\gamma_i \right)} \right)^2$$
(5)

where $T_i(x)$ is the Chebyshev polynomial of degree *i*, $\theta(\cdot, \cdot)$ is the angle between two vectors, and

$$\gamma_{i} = 1 + 2 \frac{\lambda_{i} - \lambda_{i+1}}{\lambda_{i+1} - \lambda_{n}}$$
$$L_{i}^{(k)} = \begin{cases} \prod_{j=1}^{i-1} \frac{\lambda_{j}^{(k)} - \lambda_{n}}{\lambda_{j}^{(k)} - \lambda_{i}} & \text{if } i \neq 1\\ 1 & \text{if } i = 1 \end{cases}$$

Aside - Chebyshev Polynomials

Recall

$$T_{j}(x) = \frac{1}{2} \left(\left(x + \sqrt{x^{2} - 1} \right)^{j} + \left(x - \sqrt{x^{2} - 1} \right)^{j} \right)$$
(6)

When j is large,

$$T_j(x) pprox rac{1}{2} \left(x + \sqrt{x^2 - 1}
ight)^j$$

and when g is small,

$$T_j(1+g)pprox rac{1}{2}\left(1+g+\sqrt{2g}
ight)^j$$

determines the convergence of Lanczos with

$$g = \Theta\left(\frac{\lambda_i - \lambda_{i+1}}{\lambda_{i+1} - \lambda_n}\right)$$

April 17, 2018 11 / 43

Introduced by Golub and Underwood in 1977 [GU77] and Cullum and Donath in 1974 [CD74].

The block generalization of the Lanczos method uses, instead of a single initial vector \mathbf{v} , a block of b vectors $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_b \end{bmatrix}$, and builds the Krylov subspace in q iterations as $\mathcal{K}_q(\mathbf{A}, \mathbf{V}, q) = \operatorname{span} \{\mathbf{V}, \mathbf{AV}, \cdots, \mathbf{A}^{q-1}\mathbf{V}\}.$

 $k \leq b$, $bq \ll n$.

Compared to classical Lanczos, block Lanczos

- is more memory and cache efficient, using BLAS3 operations.
- has the ability to converge to eigenvalues with cluster size > 1.
- has faster convergence with respect to number of iterations.

Block Lanczos Algorithm - Details

$$\mathbf{A}\begin{bmatrix}\mathbf{Q}_1 & \cdots & \mathbf{Q}_j\end{bmatrix} = \begin{bmatrix} \mathbf{Q}_1 & \cdots & \mathbf{Q}_j & \mathbf{Q}_{j+1} \end{bmatrix}$$

$$\begin{bmatrix} \mathcal{A}_1 & \mathcal{B}_1^T & & \\ \mathcal{B}_1 & \ddots & \ddots & \\ & \ddots & \ddots & \mathcal{B}_{j-1}^T \\ & & \mathcal{B}_{j-1} & \mathcal{A}_j \\ \hline & & & \mathcal{B}_j \end{bmatrix}$$

At each step $j = 1, \cdots, k$ of Lanczos iteration:

$$\mathbf{A}\mathbf{Q} = \mathbf{Q}\mathbf{T}_j + \mathbf{Q}_{j+1} \begin{bmatrix} \mathbf{0} & \cdots & \mathbf{0} & \mathcal{B}_j \end{bmatrix}$$

Use the three-term recurrence:

$$\mathbf{A}\mathbf{Q}_{j} = \mathbf{Q}_{j-1}\mathcal{B}_{j-1}^{T} + \mathbf{Q}_{j}\mathcal{A}_{j} + \mathbf{Q}_{j+1}\mathcal{B}_{j}$$

Calculate the $\mathcal{A}s$, $\mathcal{B}s$ as:

$$\mathcal{A}_{j} = \mathbf{Q}_{j}^{T} \mathbf{A} \mathbf{Q}_{j}$$
(7)
$$\mathbf{Q}_{j+1} \mathcal{B}_{j} \leftarrow \operatorname{qr} \left(\mathbf{A} \mathbf{Q}_{j} - \mathbf{Q}_{j} \mathcal{A}_{j} - \mathbf{Q}_{j} \mathcal{B}_{j-1}^{T} \right)$$
(8)

April 17, 2018 15 / 43

First analyzed by Underwood in 1975 [Und75] with the introduction of the algorithm.

Theorem (Underwood Inequality)

Let λ_i , \mathbf{u}_i , $i = 1, \dots, n$ be the eigenvalues and eigenvectors of **A** respectively. Let $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_b \end{bmatrix}$. If $\mathbf{U}^T \mathbf{V}$ is of full rank b, then for $i = 1, \dots, b$

$$0 \leq \lambda_i - \lambda_i^{(q)} \leq (\lambda_1 - \lambda_n) \frac{\tan^2 \Theta(\mathbf{U}, \mathbf{V})}{T_{q-1}^2(\rho_i)}$$

where $T_i(x)$ is the Chebyshev polynomial of degree *i*, $\cos \Theta(\mathbf{U}, \mathbf{V}) = \sigma_{\min}(\mathbf{U}^T \mathbf{V})$, and

$$\rho_i = 1 + 2\frac{\lambda_i - \lambda_{b+1}}{\lambda_{b+1} - \lambda_n}$$

(9)

Convergence of Block Lanczos

Theorem (Saad Inequality [Saa80])

Let λ_j , \mathbf{u}_j , $j = 1, \dots, n$ be the eigenvalues and eigenvectors of **A** respectively. Let $\mathbf{U}_i = \begin{bmatrix} \mathbf{u}_i & \cdots & \mathbf{u}_{i+b-1} \end{bmatrix}$. For $i = 1, \dots, b$, if $\mathbf{U}_i^T \mathbf{V}$ is of full rank b, then

$$0 \le \lambda_i - \lambda_i^{(q)} \le (\lambda_i - \lambda_n) \left(\frac{L_i^{(q)} \tan \Theta (\mathbf{U}_i, \mathbf{V})}{T_{q-i} (\hat{\gamma}_i)} \right)^2$$
(10)

where $T_i(x)$ is the Chebyshev polynomial of degree *i*, $\cos \Theta(\mathbf{U}, \mathbf{V}) = \sigma_{\min}(\mathbf{U}^T \mathbf{V})$, and

$$\hat{\gamma}_{i} = 1 + 2 \frac{\lambda_{i} - \lambda_{i+b}}{\lambda_{i+b} - \lambda_{n}}$$
$$L_{i}^{(q)} = \begin{cases} \prod_{j=1}^{i-1} \frac{\lambda_{j}^{(q)} - \lambda_{n}}{\lambda_{j}^{(q)} - \lambda_{i}} & \text{if } i \neq 1\\ 1 & \text{if } i = 1 \end{cases}$$

Aside - Block Size

Recall, when j is large and g is small

$$T_j(1+g) \approx \frac{1}{2} \left(1 + g + \sqrt{2g} \right)^j \tag{11}$$

classical:
$$g = \Theta\left(\frac{\lambda_i - \lambda_{i+1}}{\lambda_{i+1} - \lambda_n}\right)$$

block: $g_b = \Theta\left(\frac{\lambda_i - \lambda_{i+b}}{\lambda_{i+b} - \lambda_n}\right)$

Suppose eigenvalue distributed as $\lambda_j > (1 + \epsilon)\lambda_{j+1}$ for all *j*:

$$egin{aligned} g_b &pprox rac{1-(1+\epsilon)^{-b}}{(1+\epsilon)^{-b}}\cdot\lambda_i \ &pprox b\cdot\lambda_i\epsilon \ &pprox b\cdot g \end{aligned}$$

Qiaochu Yuan

April 17, 2018 18 / 43

April 17, 2018 19 / 43

In recent years, there has been increased interest in algorithms to compute low-rank approximations of matrices, with

- high computational efficiency requirement, running on large matrices
- low approximation accuracy requirement, 2-3 digits of accuracy

Applications mostly in big-data computations

- compression of data matrices
- matrix processing techniques, e.g. PCA
- optimization of the nuclear norm objective function

Grew out of work done in randomized algorithms, in particular Randomized Subspace Iteration, by

- Rokhlin, Szlam, and Tygert in 2009 [RST09]
- Halko, Martinsson, and Tropp in 2011 [HMST11]
- Gu [Gu15], and Musco [MM15] in 2015

Idea: Instead of taking any initial set of vectors V, an unfortunate choice of which could result in poor convergence, choose $V = A\Omega$, a random projection of the columns of A, to better capture the range space.

Algorithm 1 Randomized Subspace Iteration (RSI) pseudocode

- **Input:** $\mathbf{A} \in \mathbb{R}^{m \times n}$, target rank k, block size b, number of iter. q
- **Output:** $\mathbf{B}_k \in \mathbb{R}^{m \times n}$, a rank-k approximation
 - 1: Draw $\mathbf{\Omega} \in \mathbb{R}^{n \times b}$ $\omega_{ij} \sim \mathcal{N}(0, 1)$.
 - 2: Form $\mathbf{K} = (\mathbf{A}\mathbf{A}^T)^{q-1}\mathbf{A}\mathbf{\Omega}$.
 - 3: Orthogonalize $qr(\mathbf{K}) \rightarrow \mathbf{Q}$.
 - 4: $\mathbf{B}_k = (\mathbf{Q}\mathbf{Q}^T\mathbf{A})_k = \mathbf{Q}(\mathbf{Q}^T\mathbf{A})_k.$

* $(\mathbf{M})_k$ indicates the *k*-truncated SVD of matrix **M**.

Algorithm 2 Randomized Block Lanczos (RBL) pseudocode

- **Input:** $\mathbf{A} \in \mathbb{R}^{m \times n}$, target rank k, block size b, number of iter. q
- **Output:** $\mathbf{B}_k \in \mathbb{R}^{m \times n}$, a rank-*k* approximation
 - 1: Draw $\mathbf{\Omega} \in \mathbb{R}^{n \times b}$. $\omega_{ij} \sim \mathcal{N}(0, 1)$.
 - 2: Form

 $\mathbf{K} = [\mathbf{A}\Omega, (\mathbf{A}\mathbf{A}^{\mathsf{T}})\mathbf{A}\Omega, \cdots, (\mathbf{A}\mathbf{A}^{\mathsf{T}})^{q-1}\mathbf{A}\Omega].$

イロト 不得 トイヨト イヨト

3: Orthogonalize
$$qr(K) \rightarrow Q$$
.

4:
$$\mathbf{B}_k = (\mathbf{Q}\mathbf{Q}^T\mathbf{A})_k = \mathbf{Q}(\mathbf{Q}^T\mathbf{A})_k.$$

```
* requires bq \ge k.
** numerically unstable.
```


April 17, 2018 23 / 43

A modification of the Lanczos algorithm can be used to find the extremal singular value pairs of a non-symmetric matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Utilizing the connections between the singular value decomposition of \mathbf{A} and the eigen decompositions of $\mathbf{A}\mathbf{A}^{T}$ and $\mathbf{A}^{T}\mathbf{A}$,

- Select a block of initial vectors $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_b \end{bmatrix}$.
- **2** Construct Krylov subspaces $\mathcal{K}_V(\mathbf{A}^T\mathbf{A}, \mathbf{V}, q)$ and $\mathcal{K}_U(\mathbf{A}\mathbf{A}^T, \mathbf{A}\mathbf{V}, q)$.
- **③** Restrict and project **A** to form $\mathbf{B} = \operatorname{proj}_{\mathcal{K}_U} \mathbf{A}|_{\mathcal{K}_V}$
- Use singular values and vectors of B as approximations to those of A.

Golub-Kahan Bidiagonalization [GK65]

$$\mathbf{A} \begin{bmatrix} \mathbf{V}_{1} & \cdots & \mathbf{V}_{j} \end{bmatrix} = \begin{bmatrix} \mathbf{U}_{1} & \cdots & \mathbf{U}_{j} \end{bmatrix} \begin{bmatrix} \mathcal{A}_{1} & \mathcal{B}_{1}^{T} & & \\ & \ddots & \ddots & \\ & & \ddots & \mathcal{B}_{j-1}^{T} \\ & & \mathcal{A}_{j} \end{bmatrix}$$
$$\mathbf{A}^{T} \begin{bmatrix} \mathbf{U}_{1} & \cdots & \mathbf{U}_{j} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{1} & \cdots & \mathbf{V}_{j} \mid \mathbf{V}_{j+1} \end{bmatrix} \begin{bmatrix} \mathcal{A}_{1} & & & \\ \mathcal{B}_{1} & \ddots & & \\ & \ddots & \ddots & \\ & & \mathcal{B}_{j-1} & \mathcal{A}_{j} \\ \hline & & & \mathcal{B}_{j} \end{bmatrix}$$

At each step $j = 1, \cdots, k$ of the bidiagonalization, calculate As and Bs as:

$$\mathbf{U}_{j}\mathcal{A}_{j} \leftarrow \operatorname{qr}\left(\mathbf{A}\mathbf{V}_{j} - \mathbf{U}_{j-1}\mathcal{B}_{j-1}^{\mathsf{T}}\right)$$
(12)

$$\mathbf{V}_{j+1}\mathcal{B}_j \leftarrow \operatorname{qr}\left(\mathbf{A}^{\mathsf{T}}\mathbf{U}_j - \mathbf{V}_j\mathcal{A}_j\right)$$
(13)

April 17, 2018 26 / 43

Analyzed by Musco and Musco in 2015 [MM15].

Theorem

For block size $b \ge k$, in $q = \Theta\left(\frac{\log n}{\epsilon}\right)$ iterations of RSI and $q = \Theta\left(\frac{\log n}{\sqrt{\epsilon}}\right)$ iterations of RBL, with constant probability 99/100, the following inequalities bounds are satisfied:

$$|\sigma_i^2 - \sigma_i^2(\mathbf{B}_k)| \le \epsilon \sigma_{k+1}^2, \text{ , for } i = 1, \cdots, k$$
 (14)

In the event that $\sigma_{b+1} \leq c\sigma_k$ with c < 1, taking $q = \Theta\left(\frac{\log(n/\epsilon)}{\min(1,\sigma_k/\sigma_{b+1}-1)}\right)$ and $q = \Theta\left(\frac{\log(n/\epsilon)}{\sqrt{\min(1,\sigma_k/\sigma_{b+1}-1)}}\right)$ suffices for RSI and RBL respectively.

Many of our analysis techniques are similar to those used by Gu to analyze RSI [Gu15]. The bounds for RBL resulting from the current work will be similar in form to the bounds for RSI.

Theorem (RSI convergence)

Let \mathbf{B}_k be the approximation returned by the RSI algorithm on $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, with target rank k, block size $b \ge k$, and q iterations. If $\hat{\mathbf{\Omega}}_1$ has full row rank in $\mathbf{V}^T \mathbf{\Omega} = \begin{bmatrix} \hat{\mathbf{\Omega}}_1^T & \hat{\mathbf{\Omega}}_2^T \end{bmatrix}^T$, then

$$\sigma_{j} \geq \sigma_{j} \left(\mathbf{B}_{k} \right) \geq \frac{\sigma_{j}}{\sqrt{1 + \|\hat{\mathbf{\Omega}}_{2}\|_{2}^{2} \|\hat{\mathbf{\Omega}}_{1}^{\dagger}\|_{2}^{2} \left(\frac{\sigma_{b+1}}{\sigma_{j}}\right)^{4q+2}}}$$
(15)

The core pieces of our analysis are:

- the growth behavior of Chebyshev polynomials,
- 2 the choice of a clever orthonormal basis for Krylov subspace,
- Solution of a spectrum "gap", by separating the spectrum of A into those singular values that are "close" to σ_k, and those that are sufficiently smaller in magnitude.

Setup & Notation

For block size *b*, random Gaussian matrix $\mathbf{\Omega} \in \mathbb{R}^{n \times b}$, we are interested in the column span of

$$\mathbf{K}_q = \begin{bmatrix} \mathbf{A} \mathbf{\Omega} & (\mathbf{A} \mathbf{A}^{\mathcal{T}}) \, \mathbf{A} \mathbf{\Omega} & \cdots & (\mathbf{A} \mathbf{A}^{\mathcal{T}})^{q-1} \, \mathbf{A} \mathbf{\Omega} \end{bmatrix}$$

Let the SVD of $\mathbf{A} \in \mathbb{R}^{m \times n}$ be $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$. For any $0 \le p \le q$, define

$$\begin{split} \hat{\mathsf{K}}_{p} &:= \mathsf{U} \, \mathcal{T}_{2p+1}(\mathbf{\Sigma}) \begin{bmatrix} \hat{\Omega} & \mathbf{\Sigma}^{2} \hat{\Omega} & \cdots & \mathbf{\Sigma}^{2(q-p-1)} \hat{\Omega} \end{bmatrix} \\ &= \mathsf{U} \, \mathcal{T}_{2p+1}(\mathbf{\Sigma}) \mathsf{V}_{q-p} \end{split}$$

Note $\mathbf{V}_{q-p} \in \mathbb{R}^{n \times b(q-p)}$. We require $b(q-p) \ge k$, the target rank.

Lemma

With $\hat{\mathbf{K}}_p$ and \mathbf{K}_q as previously defined,

$$\operatorname{span}\left\{ \mathsf{K}_{q}\right\} \supseteq \operatorname{span}\left\{ \hat{\mathsf{K}}_{p}\right\}$$

Qiaochu Yuan

(16)

Theorem (Main Result)

Let \mathbf{B}_k be the approximation returned by the RBL algorithm. With notation as previously defined, if the random starting Ω is initialized such that the block Vandermonde formed by the sub-blocks of \mathbf{V}_{q-p} is invertible, then for all $1 \le j \le k$, and all choices^a of s, r,

$$\sigma_j \ge \sigma_j(\mathbf{B}_k) \ge \frac{\sigma_{j+s}}{\sqrt{1 + \mathcal{C}^2 T_{2p+1}^{-2} \left(1 + 2 \cdot \frac{\sigma_j - \sigma_{j+s+r+1}}{\sigma_{j+s+r+1}}\right)}}$$
(17)

where $p = q - \frac{k+r}{b}$, and C is a constant independent of q.

 $^{{}^{}a}s$ is chosen to be non-zero to handle multiple singular values, and can be set to zero otherwise.

Rewriting bounds in comparable forms:

citation	bound	req. on b
Saad [Saa80]	$\lambda_j^{(q)} \geq \frac{\lambda_j}{1 + L_j^{(q)^2} \tan^2 \Theta(\mathbf{U}, \mathbf{V}) T_{q-j}^{-2} \left(1 + 2 \frac{\lambda_j - \lambda_{j+b}}{\lambda_{j+b}}\right)}$	$b \ge k$
Musco [MM15] spec. indep.	$\sigma_j^{(q)} \geq rac{\sigma_j}{\sqrt{1+\mathcal{C}_1^2\log^2(n)q^{-2}rac{\sigma_{k+1}^2}{\sigma_j^2}}}$	$b \ge k$
Musco [MM15] spec. dep.	$\sigma_j^{(q)} \geq \frac{\sigma_j}{\sqrt{1 + \mathcal{C}_2 n e^{-q\sqrt{\min(1,\sigma_k/\sigma_{b+1}-1)}\frac{\sigma_{k+1}^2}{\sigma_j^2}}}$	$b \ge k$
Current Work	$\sigma_{j}^{(q)} \geq \frac{\sigma_{j}}{\sqrt{1 + C_{3}^{2} T_{2q+1-2(k+r)/b}^{-2} \left(1 + 2 \frac{\sigma_{j} - \sigma_{j+r+1}}{\sigma_{j+r+1}}\right)}}$	$b \ge 1$ $bq \ge k+r$

Typical Case - Superlinear Convergence

Recall: $\{a_q\}$ convergence superlinearly to a if

$$\lim_{q \to \infty} \frac{|a_{q+1} - a|}{|a_q - a|} = 0$$
(18)

- In practice, Lanczos algorithms (classical, block, randomized) often exhibit superlinear convergence behavior.
- It has been shown that classical Lanczos iteration is theoretically superlinearly convergent under certain assumptions about the singular spectrum [saa94, Li10].
- We show this for block Lanczos algorithms, i.e., that under certain assumptions about the singular spectrum, block Lanczos produces rank k approximations \mathbf{B}_k such that $\sigma_j(\mathbf{B}_k) \rightarrow \sigma_j$ superlinearly.

Typical Case - Superlinear Convergence

A typical data matrix might have singular value spectrum decaying to 0, i.e., $\sigma_j \rightarrow 0$. In this case our bound suggests that convergence is governed by

$$a_q := \left(\mathcal{C}(r)T_p^{-1}\left(1+g\right)\right)^2 \approx \left(\mathcal{C}(r)\cdot\frac{1}{2}\left(1+g+\sqrt{2g}\right)^{-p}\right)^2 \qquad \to 0$$

with

$$g = 2\frac{\sigma_j - \sigma_{j+r+1}}{\sigma_{j+r+1}} = 2\left(\frac{\sigma_j}{\sigma_{j+r+1}} - 1\right) \to \infty$$
$$p = 2\left(q - \frac{k+r}{b}\right) + 1 = 2q + \left(1 - 2\frac{k+r}{b}\right)$$

We argue that $a_{q+1}/a_q \to 0$ as follows: for all $\epsilon > 0$, choose¹ r so that $1+g \ge \epsilon^{-\frac{1}{2}}$. Then,

¹Recall 1) our main result holds for all r; 2) k + r = (q - p)b, and so choosing r amounts to choosing q.

Qiaochu Yuan

Effect of r

There is some optimal value of r, typically non-zero, which achieves the best convergence factor. The balance is between larger (smaller) values of r, which implies lower (higher) Chebyshev degree but bigger (smaller) gap.

Figure: Value of reciprocal convergence factor $T_{2q+1-2((k+r)/b)}^{-1}\left(1+2\frac{\sigma_j-\sigma_{j+r+1}}{\sigma_{j+r+1}}\right)$ as *r* varies, for Daily Activities and Sports Dataset, k = j = 100, b = 10, q = 20.

36 / 43

Qiaochu Yuan

Numerical Example

Experimentally, choices of smaller block sizes $1 \le b < k$ appear favorable with superlinear convergence for all block sizes.

Figure: Eigenfaces Dataset - $\mathbf{A} \in \mathbb{R}^{10304 \times 400}$.

April 17, 2018 38 / 43

- Both the theoretical analysis and numerical evidence suggest that, holding the number of matrix vector operations constant, RBL with smaller block size *b* is better.
- For matrices with decaying spectrum, RBL achieves superlinear convergence.
- However the preference for smaller *b* must be balanced with the advantages of a larger *b* for computational efficiency and numerical stability reasons in a practical implementation, and should be further investigated.

- Jane Cullum and William E Donath, A block lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices, Decision and Control including the 13th Symposium on Adaptive Processes, 1974 IEEE Conference on, vol. 13, IEEE, 1974, pp. 505–509.
- Gene Golub and William Kahan, *Calculating the singular values and pseudo-inverse of a matrix*, Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis **2** (1965), no. 2, 205–224.
- Gene Howard Golub and Richard Underwood, *The block lanczos method for computing eigenvalues*, Mathematical software, Elsevier, 1977, pp. 361–377.

- Ming Gu, Subspace iteration randomization and singular value problems, SIAM Journal on Scientific Computing 37 (2015), no. 3, A1139–A1173.
- Nathan Halko, Per-Gunnar Martinsson, Yoel Shkolnisky, and Mark Tygert, An algorithm for the principal component analysis of large data sets, SIAM Journal on Scientific computing 33 (2011), no. 5, 2580–2594.
- Shmuel Kaniel, *Estimates for some computational techniques in linear algebra*, Mathematics of Computation **20** (1966), no. 95, 369–378.
- Cornelius Lanczos, *An iteration method for the solution of the eigenvalue problem of linear differential and integral operators*, United States Governm. Press Office Los Angeles, CA, 1950.

- Ren-Cang Li, Sharpness in rates of convergence for the symmetric lanczos method, Mathematics of Computation 79 (2010), no. 269, 419–435.
- Cameron Musco and Christopher Musco, *Randomized block krylov methods for stronger and faster approximate singular value decomposition*, Advances in Neural Information Processing Systems, 2015, pp. 1396–1404.
- Christopher Conway Paige, *The computation of eigenvalues and eigenvectors of very large sparse matrices.*, Ph.D. thesis, University of London, 1971.
- Vladimir Rokhlin, Arthur Szlam, and Mark Tygert, *A randomized algorithm for principal component analysis*, SIAM Journal on Matrix Analysis and Applications **31** (2009), no. 3, 1100–1124.

- Yousef Saad, On the rates of convergence of the lanczos and the block-lanczos methods, SIAM Journal on Numerical Analysis **17** (1980), no. 5, 687–706.
- Theoretical error bounds and general analysis of a few lanczos-type algorithms, 1994.
- Richard Underwood, An iterative block lanczos method for the solution of large sparse symmetric eigenproblems, Tech. report, 1975.