Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: MWF 3:00-4:000PM
Email: mgu@math.berkeley.edu
http://www.math.berkeley.edu/~mgu/MA128BSp2009

Math128B: Numerical Analysis Programming Assignment \#1, Due Feb. 16, 2009

Program up Algorithms 7.1, 7.2, and 7.3. Using these algorithms to solve the following problem

$$
A x=b,
$$

where A is an $n \times n$ symmetric tridiagonal matrix with 2 on the diagonal and -1 on the superdiagonal and subdiagonal; and b is 1 on the first and last entry and 0 everywhere else. The exact solution of this system is a vector of all 1's.

Use the splitting $A=M-N$ with M the diagonal matrix with 2 on the diagonal. Run the algorithms for $n=100$ and 200 , with $T O L=10^{-6}$, and a random but same initial vector. We will not set maximum number of iterations. For Algorithm 7.3, choose $\omega=\frac{2}{1+\sqrt{1-\rho^{2}}}$ where $\rho=\cos \left(\frac{\pi}{2(n+1)}\right)$.

You should:

1. Write a report to compare
(a) the number of iterations required by each algorithm
(b) the amount of CPU time required by each algorithm
(c) the error in the computed solutions.
2. Email both your report and your matlab code to Scott by 11:59PM, Feb. 16.
