Midterm \#2, Math 16a, Fall 2010

T. Slaman

Thursday, November 4, 2010

Your Name:
Your TA's Name:
Your Section Number:

Scoring. There are six problems. Problems 1-4 are worth 10 points each and problems 5 and 6 are worth 15 points each, for a maximum possible score of 70 points.

IMPORTANT: Do all work on the exam, use the back if you need more space. No calculators, notes, or books.

Score
1.
2.
3.
4.
5.
6.

Total

1. Differentiate $f(x)=e^{\frac{x-1}{x^{2}+1}}$.
2. Find the equation of the tangent lines to the graph of $x^{2} y^{4}=1$ at the point $\left(4, \frac{1}{2}\right)$ and at the point $\left(4,-\frac{1}{2}\right)$.
3. Farmer Brown has 40 feet of fencing and wishes to make a rectangular fenced-in area for his flock of chickens. If he uses his house for one side of the fence, what is the maximum area he can enclose?
4. The length ℓ of a rectangle is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{sec}$ and the width w of the rectangle is increasing at a rate of $2 \mathrm{~cm} / \mathrm{sec}$. Find the rates of change for the area and for the length of the diagonal when $\ell=5$ and $w=12$. Indicate whether these quantities are decreasing or increasing.
5. (15 points) Let $f(x)=e^{-x^{2}}$. Find all x-intercepts, asymptotes, relative extreme points, and points of inflection for $y=f(x)$. State how you know that the points you find are correctly identified.
6. (15 points) Sketch the graph of $y=x^{4}-4 x^{3}$. Clearly indicate all x-intercepts, relative and absolute extreme points, and points of inflection.
