Midterm #2, Math 16a, Fall 2010

T. Slaman Thursday, November 4, 2010

Your Name:

Your TA's Name:

Your Section Number:

Scoring. There are six problems. Problems 1-4 are worth 10 points each and problems 5 and 6 are worth 15 points each, for a maximum possible score of 70 points.

<u>IMPORTANT</u>: Do all work on the exam, use the back if you need more space. No calculators, notes, or books.

-				
Score				
1.				
2.				
3.				
4.				
5.				
6.				
Total				

1. Differentiate $f(x) = e^{\frac{x-1}{x^2+1}}$.

2. Find the equation of the tangent lines to the graph of $x^2y^4 = 1$ at the point $(4, \frac{1}{2})$ and at the point $(4, -\frac{1}{2})$.

3. Farmer Brown has 40 feet of fencing and wishes to make a rectangular fenced-in area for his flock of chickens. If he uses his house for one side of the fence, what is the maximum area he can enclose?

4. The length ℓ of a rectangle is decreasing at a rate of 1 cm/sec and the width w of the rectangle is increasing at a rate of 2 cm/sec. Find the rates of change for the area and for the length of the diagonal when $\ell = 5$ and w = 12. Indicate whether these quantities are decreasing or increasing.

5. (15 points) Let $f(x) = e^{-x^2}$. Find all x-intercepts, asymptotes, relative extreme points, and points of inflection for y = f(x). State how you know that the points you find are correctly identified.

6. (15 points) Sketch the graph of $y = x^4 - 4x^3$. Clearly indicate all *x*-intercepts, relative and absolute extreme points, and points of inflection.