
SYMMETRIC MATRICES AND INNER PRODUCTS

Longer (Non)Examples

(1) If A is the matrix

[
1 2
3 1

]
, does the function 〈x,y〉 = xTAy define an inner product on R2? Check

the three properties of inner product.

No. Notice that the matrix is not symmetric. This suggests that the function described above
might fail the symmetry property of inner products. To check this, we need to find two particular

vectors x and y such that 〈x,y〉 6= 〈y,x〉. To this end, let x =

[
1
0

]
and y =

[
1
1

]
. Then compute

〈x,y〉 = 3 but 〈y,x〉 = 4. So the function defined above is not symmetric and therefore does not
define an inner product on R2.

(2) The Minkowski metric is a function that comes up in relativity; it is “almost” an inner product on

R4. It is given by, for x =


x1
x2
x3
x4

 and y =


y1
y2
y3
y4

 ∈ R4,

〈x,y〉 = x1y1 + x2y2 + x3y3 − x4y4
So it differs from the usual dot product on R4 only by the presence of the minus sign in the x4y4

term. The fourth coordinate is thought of as the time variable, whilst the other three coordinates are
spatial variables. Show that the Minkowski metric is not actually an inner product on R4. Which
property fails?

The presence of the negative sign suggests that this function might fail the positive definite prop-
erty. This condition says in particular that the only vector with length zero is the zero vector. To
show that this property fails, we look for a nonzero vector which, in the Minkowski metric, has length
zero. Set x = e1 + e4. Then 〈x,x〉 = 1 + 0 + 0 − 1 = 0, but x 6= 0, so the Minkowski metric is not
an inner product.

(3) The real numbers form a subset of the complex numbers. Prove that a complex number z is actually
a real number if and only if z = z.

Write z = x+ iy. Then z = x− iy and the condition that z = z is equivalent to the condition that
x+ iy = x− iy, which is equivalent to y = −y, which in turn is equivalent to y = 0. Thus z = z if
and only if y = 0, so z is real.

(4) Why is C[0, 1], the set of all continuous real-valued functions defined on the interval [0, 2π], a vector
space? In lecture it was observed that C[0, 2π] can be given an inner product as follows: if f, g are
two continuous functions on [0, 2π], then their inner product is

〈f, g〉 =

∫ 2π

0

f(x)g(x)dx.

This is certainly a function from C[0, 2π]×C[0, 2π] to R. Check that it satisfies the three properties
bilinearity, symmetry, and positive-definiteness, and thus is actually an inner product. Prove that
the two functions sinx and cosx are orthogonal. Find two other functions that are orthogonal to
each other. What is the largest orthogonal set of functions you can construct?

solution omitted
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(5) (The Symmetrizer) If A is any matrix, let S(A) be the new matrix given by the formula

S(A) =
A+AT

2

Show that S(A) is always symmetric, no matter what A is.

Similarly, define the “antisymmetrizer” by

S̃(A) =
A−AT

2

What is the relationship between S̃(A) and its transpose? [We express this relationship by saying

that S̃(A) is antisymmetric.] Prove that any matrix can be decomposed into a sum of a symmetric
and an antisymmetric matrix.

solution omitted
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True or False

Provide reasons for the true and counterexamples for the false.

(1) Any real matrix with real eigenvalues is symmetric.

False. The matrix

[
1 1
0 2

]
has real eigenvalues 1 and 2, but it is not symmetric.

(2) A symmetric matrix is always square.
True. If A is symmetric, then A = AT . If A is an m × n matrix, then its transpose is an n ×m
matrix, so if these are equal, we must have m = n.

(3) Any real matrix with real eigenvalues is similar to a symmetric matrix.
False. [The argument that follows is long, but if pressed for time, you should suspect this of being
false because it’s missing the condition about being orthogonally diagonalizable.] For a counterex-

ample, let A be the matrix

[
0 1
0 0

]
. Then A has real eigenvalues, namely zero, but we will show

that A is not similar to any symmetric matrix. One way to do this would be to assume that it were,
i.e., that A = PSP−1 for some symmetric S, and try to derive a contradiction. This might get
messy. Our lives will be easier if we remember a few facts about similar matrices: they have the
same eigenvalues, and therefore the same determinant and the same trace. Knowing this, let S be

any symmetric matrix - it must have the form

[
a b
b c

]
for some a, b, c ∈ R. Since A only has the

eigenvalue 0, its trace and determinant are both zero, so for A and S to be similar we must have
detS = ac − b2 = 0 and TrA = a + c = 0. Therefore a = −c and b2 = ac = a(−a) = −a2. But
b2 = −a2 if and only if both a and b are zero. But if b is zero, we’ve diagonalized A. We saw last
week that A cannot be diagonalized - its only eigenspace is 1-D. So by assuming A is similar to S
we get a contradiction, hence A is not similar to any symmetric matrix.

(4) Any two eigenvectors of a symmetric matrix are orthogonal.
False. We know only that eigenvectors from different eigenspaces are orthogonal. For a counterex-
ample, just take any two eigenvectors, one of which is a multiple of the other.

(5) NOTE: I made a change here - there was a typo in the earlier version
If a symmetric matrix A has two eigenvalues λ1, λ2 with corresponding eigenspaces E1, E2 ⊂ Rn and
A is diagonalizable, then E2 = E⊥1 .
True. Since A is diagonalizable, it has n independent eigenvectors. Therefore E1 and E2 together
span Rn (this is expressed by saying that they are complementary subspaces). Moreover, we have
seen that everything in E1 is orthogonal to everything in E2, so the two subspaces are orthogonal.
Thus each one is the orthogonal complement of the other. It is instructive to explain this by choosing
an orthogonal basis for each eigenspace, and using them together to form a basis for Rn. You should
think this through on your own.

(6) An n× n matrix A has n orthogonal eigenvectors if and only if it is symmetric.
True. It is a theorem that a matrix is symmetric if and only if it is orthogonally diagonalizable.
This is the same as having n orthogonal eigenvectors since eigenvectors are nonzero and nonzero
orthogonal vectors are independent.

(7) If x ∈ Rn, and A = xxT , then A2 = A.
False. A2 = (xxT )(xxT ) = x(xTx)xT = x(x · x)xT = x(||x||2)xT = (||x||2)xxT = ||x||2A. This will
not be equal to A unless x is a unit vector. Notice, though, that if x is a unit vector, then this matrix
is the matrix for the projection along x (see question 10).

(8) If the columns of A form an orthogonal basis for Rn, then (Ax) · (Ay) = x ·y, for all x,y ∈ Rn [Hint:
check the identity on the standard basis vectors e1, . . . , en].
False. Let the columns of A be v1, . . . , vn. If ei is one of the standard basis vectors, then Aei = vi, by
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the way matrix multiplication is carried out. So if x = y = ei, then (Ax)·(Ay) = (Aei)·(Aei) = vi ·vi.
On the other hand, x · y = ei · ei = 1. But vi · vi will not be equal to one unless vi is a unit vector.
So the claim is false for orthogonal columns. However, if the columns form an orthonormal basis,
then the formula does hold. Such a matrix is called an orthogonal matrix, and can be defined by
the property above.

(9) If A is symmetric, then for any x,y ∈ Rn, (Ax) · y = x · (Ay).
True. We proved this in discussion.

(10) If 0 6= x ∈ Rn, then the matrix xxT is the matrix for the projection onto the line spanned by x.
False. (I should have said “orthogonal projection” to make absolutely clear what was meant) This is
only true if x is a unit vector. I illustrate the difference with an example. Work in R2 for simplicity,

and first let x = e1, the unit vector along the x-axis. Then the matrix xxT is

[
1 0
0 0

]
, which is

easily seen to be the projection onto the x-axis: it takes any vector

[
x
y

]
in R2 to the vector

[
x
0

]
.

So the claim is true in this case, but only because e1 has length 1. For if instead x = 2e1, still

along the x-axis but no longer with unit length, then the matrix xxT =

[
4 0
0 0

]
, which sends any

vector

[
x
y

]
in R2 to the vector

[
4x
0

]
. Thus it defines a map to the x-axis, but it is not the

orthogonal projection, since for example the vector

[
1
1

]
gets mapped to

[
4
0

]
, but the difference[

1
1

]
−
[

4
0

]
=

[
−3
1

]
is not orthogonal to the x-axis (draw a picture).

(11) If a matrix M is symmetric, and M = PDP−1, where D is diagonal, then PT = P−1.
False. It is true that if A is symmetric, then it is diagonalizable, so the given D must have entries
the eigenvalues of A, and the columns of P must be eigenvectors of A. In fact, they are an orthogonal
set of eigenvectors since A is symmetric. However, it does not follow from this that PT = P−1. For
that formula to be true, we would need to have chosen an orthonormal set of eigenvectors as the
columns for P . I’ll leave it to you to write out an explicit counterexample.

(12) Every eigenspace of a symmetric matrix has dimension equal to the multiplicity of the corresponding
eigenvalue.
True (I should have said “algebraic multiplicity” to be completely clear). This is exactly the condi-
tion for diagonlaizability: if a certain eigenvalue is repeated, say, three times in the characteristic
polynomial, then that eigenspace should be three-dimensional. Since every symmetric matrix is diag-
onalizable, this statement is true.

(13) If A and B are symmetric, so is A+B.
True. Just check whether A+B is equal to its own transpose, using the fact that A and B are both
symmetric: (A+B)T = AT +BT = A+B.

(14) If A and B are symmetric, then so is AB.
False. This is not true for all symmetric matrices. Interestingly, it is true whenever AB = BA. For
a counterexample to the general case, we should look therefore for two matrices which don’t commute.

Try A =

[
1 1
1 2

]
and B =

[
2 0
0 1

]
. Then A and B are both symmetric, but AB =

[
2 1
2 2

]
,

which is about as symmetric as a three-legged lizard in a Salvador Dali painting.

(15) If A is a symmetric n× n matrix and B is an m× n matrix, then A+BTB is also symmetric.
True. For any m × n matrix B, BTB is an n × n matrix which is symmetric since (BTB)T =
BT (BT )T = BTB. By question 13, then, the sum of A and BTB is also symmetric.


