SYMMETRIC MATRICES AND INNER PRODUCTS

LONGER (NON)EXAMPLES

(1) If A is the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$, does the function $\langle x, y \rangle = x^T A y$ define an inner product on \mathbb{R}^2? Check the three properties of inner product.

(2) The Minkowski metric is a function that comes up in relativity; it is “almost” an inner product on \mathbb{R}^4. It is given by, for $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ and $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \in \mathbb{R}^4$, $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 - x_4 y_4$

So it differs from the usual dot product on \mathbb{R}^4 only by the presence of the minus sign in the $x_4 y_4$ term. The fourth coordinate is thought of as the time variable, whilst the other three coordinates are spatial variables. Show that the Minkowski metric is not actually an inner product on \mathbb{R}^4. Which property fails?

(3) The real numbers form a subset of the complex numbers. Prove that a complex number z is actually a real number if and only if $z = \overline{z}$.

(4) Why is $C[0,1]$, the set of all continuous real-valued functions defined on the interval $[0, 2\pi]$, a vector space? In lecture it was observed that $C[0, 2\pi]$ can be given an inner product as follows: if f,g are two continuous functions on $[0, 2\pi]$, then their inner product is $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$.

This is certainly a function from $C[0, 2\pi] \times C[0, 2\pi]$ to \mathbb{R}. Check that it satisfies the three properties bilinearity, symmetry, and positive-definiteness, and thus is actually an inner product. Prove that the two functions $\sin x$ and $\cos x$ are orthogonal. Find two other functions that are orthogonal to each other. What is the largest orthogonal set of functions you can construct?

(5) (The Symmetrizer) If A is any matrix, let $S(A)$ be the new matrix given by the formula $S(A) = \frac{A + A^T}{2}$

Show that $S(A)$ is always symmetric, no matter what A is.

Similarly, define the “antisymmetrizer” by $\tilde{S}(A) = \frac{A - A^T}{2}$

What is the relationship between $\tilde{S}(A)$ and its transpose? [We express this relationship by saying that $\tilde{S}(A)$ is antisymmetric.] Prove that any matrix can be decomposed into a sum of a symmetric and an antisymmetric matrix.
TRUE OR FALSE

Provide reasons for the true and counterexamples for the false.

(1) Any real matrix with real eigenvalues is symmetric.
(2) A symmetric matrix is always square.
(3) Any real matrix with real eigenvalues is similar to a symmetric matrix.
(4) Any two eigenvectors of a symmetric matrix are orthogonal.
(5) If a symmetric matrix \(A \) has two eigenvalues \(\lambda_1, \lambda_2 \) with corresponding eigenspaces \(E_1, E_2 \subset \mathbb{R}^n \) and \(A \) is diagonalizable, then \(E_2 = E_1^\perp \).
(6) An \(n \times n \) matrix \(A \) has \(n \) orthogonal eigenvectors if and only if it is symmetric.
(7) If \(x \in \mathbb{R}^n \), and \(A = xx^T \), then \(A^2 = A \).
(8) If the columns of \(A \) form an orthogonal basis for \(\mathbb{R}^n \), then \((Ax) \cdot (Ay) = x \cdot y \), for all \(x, y \in \mathbb{R}^n \) [Hint: check the identity on the standard basis vectors \(e_1, \ldots, e_n \)].
(9) If \(A \) is symmetric, then for any \(x, y \in \mathbb{R}^n \), \((Ax) \cdot (Ay) = x \cdot (Ay) \).
(10) If \(0 \neq x \in \mathbb{R}^n \), then the matrix \(xx^T \) is the matrix for the projection onto the line spanned by \(x \).
(11) If a matrix \(M \) is symmetric, and \(M = PDP^{-1} \), where \(D \) is diagonal, then \(P^T = P^{-1} \).
(12) Every eigenspace of a symmetric matrix has dimension equal to the multiplicity of the corresponding eigenvalue.
(13) If \(A \) and \(B \) are symmetric, so is \(A + B \).
(14) If \(A \) and \(B \) are symmetric, then so is \(AB \).
(15) If \(A \) is a symmetric \(n \times n \) matrix and \(B \) is an \(m \times n \) matrix, then \(A + B^T B \) is also symmetric.