INSTRUCTIONS:
You must justify your answers, except when told otherwise.
All the work for a question should be on the respective sheet.
This is a CLOSED BOOK examination, NO NOTES and NO CALCULATORS are allowed.
NO CELL PHONE or EARPHONE use is permitted.
Please turn in your finished examination to your GSI before leaving the room.
Question 2. (15 pts, 5+5+5)
(a) Define what is meant by an eigenvector and an eigenvalue of a matrix.
(b) Find 2×2 matrices S and D, with S invertible and D diagonal, such that $A = SDS^{-1}$, if

$$A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$$

(c) Find a number λ such that the sequence of matrices $\lambda^{-n}D^n$ has a non-zero limit as $n \to \infty$, and determine this limit. Do the same for the matrix A.
Question 3. (14 pts, 5+4+5)
(a) By running the Gram-Schmidt process on the vectors $[-1, 2, 2]^T$ and $[0, 1, 2]^T$, in this order, find an orthonormal basis q_1, q_2 of the plane they span in \mathbb{R}^2.
(b) Find a third vector q_3 such that the matrix Q with columns q_1, q_2, q_3 is orthogonal. How many possibilities are there for q_3?
(c) Find all the eigenvalues of Q, and an eigenvector for the real eigenvalue.
Hint: If you find any square roots in (a) or (b), you made a mistake.
If you can’t solve the characteristic equation right away, try some small integers. There will be a square root somewhere in (c).
Question 4. (10 pts)
Find the function of the form \(y = ax^3 + bx^2 \) which give the best approximation, in the sense of least squares, to the data points \((x_i, y_i) = (-1, 1), (0, 0), (1, 2), (2, 4)\).
THIS PAGE IS FOR ROUGH WORK (not graded)