1. Computations

Find the Fourier series for the function \(f(x) = x^3 - 2x^2 \), defined on \(-\pi < x < \pi\):

2. Linear Algebra

(1) In a vector space \(V \), which of the following statements is false, for vectors \(\mathbf{u} \) and \(\mathbf{v} \) in \(V \), and scalars \(c \) and \(d \)?
 (a) \(c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v} \)
 (b) \(c(d\mathbf{u}) = (cd)\mathbf{u} \)
 (c) \(\mathbf{u}(c\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v} \)
 (d) \((c + d)(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + d\mathbf{v} + cv + du \)

(2) Which of the following is a vector space?
 (a) The set of all polynomials \(p(x) \) such that \(p(1) \neq 1 \).
 (b) The set of all \(3 \times 3 \) matrices of determinant one.
 (c) The set of points \(\{(x, y) \mid x = y \text{ or } x = -y\} \) in \(\mathbb{R}^2 \).
 (d) The set of all sequences of real numbers.

(3) Which of the following is a subspace of \(\mathbb{R}^2 \)
 (a) The set of all points \((a, b) \) such that \(f(a, b) = 0 \), where \(f \) is the function \(f(x, y) = x^2 + y^2 \).
 (b) The set of eigenvectors for the matrix \(\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \).
 (c) The set of all \(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \) such that \(x + 2y + z = 0 \).
 (d) South Dakota.