1. Stewart 16.1.36

[5 pts]

(a) Sketch the vector field \(\mathbf{F}(x,y) = \mathbf{i} + x\mathbf{j} \) and then sketch some flow lines (lines whose velocity vectors are given by the values of \(\mathbf{F} \) at the points along the curve). What shape do these flow lines appear to have?

(b) If parametric equations of the flow lines are \(x = x(t), y = y(t) \), what differential equations do these functions satisfy? Deduce that \(\frac{dy}{dx} = x \).

(c) If a particle starts at the origin in the velocity field given by \(\mathbf{F} \), find an equation of the path it follows.

Solution:

(a) The vector field looks like this:

and the flow lines look like parabolas.

(b) By the definition of flow lines, the tangent vector to these parametric curves at each point must equal the value of \(\mathbf{F} \) at each point. Thus \((x',y') = (1,x)\), so the two functions \(x(t) \) and \(y(t) \) must satisfy

\[
x'(t) = 1 \quad \text{and} \quad y'(t) = x(t)
\]

Since \(\frac{dy}{dx} = \frac{y'(t)}{x'(t)} \), we have \(\frac{dy}{dx} = x \).

(c) To find the equation of the flow line which passes through the origin, we solve the equation \(\frac{dy}{dx} = x \), giving \(y = x^2 + C \), and the condition that it must pass the origin forces \(C = 0 \).

2. Stewart 16.2.18

[5 pts] The figure shows a vector field \(\mathbf{F} \) and two curves \(C_1 \) and \(C_2 \). Are the line integrals of \(\mathbf{F} \) over \(C_1 \) and \(C_2 \) positive, negative, or zero? Explain.
Solution: The angle between \mathbf{F} and C_1 is always between zero and 90°, so the work done along C_1 is positive. The work done along (roughly) the first half of C_2 is positive, and along the second half, negative. However, since the field is stronger along the second half, the overall work done will be negative.

3. **Stewart 16.2.42**

[5 pts] The force exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with position vector $\mathbf{r} = \langle x, y, z \rangle$ is $\mathbf{F}(\mathbf{r}) = K \mathbf{r}/|\mathbf{r}|^3$, where K is a constant. Find the work done as the particle moves along a straight line from $(2, 0, 0)$ to $(2, 1, 5)$.

Solution: The straight line path is parametrized by $(1 - t)(2, 0, 0) + t(2, 1, 5) = \langle 2, t, 5t \rangle$, with tangent vector $\langle 0, 1, 5 \rangle$. The line integral for the work done is

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \frac{K}{(4 + t^2 + 25t^2)^{3/2}} (2, 5t) \cdot \langle 0, 1, 5 \rangle dt
\]

\[
= \int_0^1 \frac{26Kt}{(4 + 26t^2)^{3/2}} dt
\]

\[
= \frac{K}{2} \int_4^{30} \frac{1}{u^{3/2}} du, \text{ where } u = 4 + 26t^2
\]

\[
= -K \left[\frac{1}{\sqrt{u}} \right]_4^{30}
\]

\[
= K \left(\frac{1}{2} - \frac{1}{\sqrt{30}} \right)
\]

Note that the work is positive, which makes sense since the particle is moving further away from the origin, and the electric field points radially outward.