ASSIGNMENT 11 SOLUTION

JAMES MCIVOR

1. Stewart 16.4.21

[5 pts]

(1) If C is the line segment connecting the point $\left(x_{1}, y_{1}\right)$ to the point $\left(x_{2}, y_{2}\right)$, show that

$$
\int_{C} x d y-y d x=x_{1} y_{2}-x_{2} y_{1}
$$

(2) If the vertices of a polygon, in counterclockwise order, are $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, show that the area of the polygon is

$$
A=\sum_{i=1}^{n-1} \frac{1}{2}\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right)+\frac{1}{2}\left(x_{n} y_{1}-x_{1} y_{n}\right)
$$

Solution:

(1) The segment is parametrized by $\mathbf{r}(t)=\left\langle x_{1}+t\left(x_{2}-x_{1}\right), y_{1}+t\left(y_{2}-y_{1}\right)\right\rangle(0 \leq t \leq 1)$, so $\mathrm{d} y=\left(y_{2}-y_{1}\right) \mathrm{d} t$ and $\mathrm{d} x=\left(x_{2}-x_{1}\right) \mathrm{d} t$. Thus

$$
\begin{aligned}
\int_{C} x \mathrm{~d} y-y \mathrm{~d} x & =\int_{0}^{1}\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)\left(y_{2}-y_{1}\right) \mathrm{d} t-\int_{0}^{1} y_{1}+t\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right) \mathrm{d} t \\
& =\left(y_{2}-y_{1}\right)\left(x_{1}+\frac{1}{2}\left(x_{2}-x_{1}\right)\right)-\left(x_{2}-x_{1}\right)\left(y_{1}+\frac{1}{2}\left(y_{2}-y_{1}\right)\right) \\
& =\frac{1}{2}\left[x_{1} y_{2}-x_{1} y_{1}+x_{2} y_{2}-x_{2} y_{1}\right]-\frac{1}{2}\left[x_{2} y_{1}-x_{1} y_{1}+x_{2} y_{2}-x_{1} y_{2}\right] \\
& =x_{1} y_{2}-x_{2} y_{1}
\end{aligned}
$$

(2) Let C be the boundary of this polygon, so C consists of n segments C_{k}, each joining $\left(x_{k}, y_{k}\right)$ to $\left(x_{k+1}, y_{k+1}\right)$, except for C_{n}, which joins $\left(x_{n}, y_{n}\right)$ to $\left(x_{1}, y_{1}\right)$. According to the area folrmula derived from Green's theorem, the area of the polygon is

$$
A=\frac{1}{2} \int_{C} y \mathrm{~d} x-x \mathrm{~d} y=\sum_{k=1}^{n} \frac{1}{2} \int_{C_{k}} y \mathrm{~d} x-x \mathrm{~d} y
$$

By (a), for each $1 \leq k \leq n-1$ we have $\int_{C_{k}} x \mathrm{~d} y-y \mathrm{~d} x=x_{k} y_{k+1}-x_{k+1} y_{k}$, and also $\int_{C_{n}} x \mathrm{~d} y-y \mathrm{~d} x=x_{n} y_{1}-x_{1} y_{n}$. Adding these up gives the desired result.

2. Stewart 16.5.37

[5 pts] This exercise demonstrates a connection between the curl vector and rotations. Let B be a rigid body rotating about the z-axis. The rotation can be described by the vector $\boldsymbol{w}=\omega \boldsymbol{k}$, where ω is the angular speed of B, that is, the tangential speed of any point P in B divided by the distance d from the axis of rotation. Let $\boldsymbol{r}=\langle x, y, z\rangle$ be the position vector of P.
(a) By considering the angle θ in the figure, show that the velocity field of B is given by $\boldsymbol{v}=\boldsymbol{w} \times \boldsymbol{r}$.
(b) Show that $\boldsymbol{v}=-\omega y \boldsymbol{i}+\omega x \boldsymbol{j}$.
(c) Show that curl $\boldsymbol{v}=2 \boldsymbol{w}$.

Solution:

(a) To show that $\mathbf{v}=\mathbf{w} \times \mathbf{r}$, we show these vectors have the same direction and smae length. The velocity vector at each point is perpendicular to the line o the z-axis, and so does $\mathbf{w} \times \mathbf{r}$, by the right hand rule. The length of \mathbf{v} is the tangential speed, which is ωd. On the other hand, the length of $\mathbf{w} \times \mathbf{r}$ is $|\mathbf{w} \| \mathbf{r}| \sin \theta$, since \mathbf{w} is in the direction of the positive z-axis. But $|\mathbf{r}| \sin \theta=d$ and $|\mathbf{w}|=\omega$, so $|\mathbf{w} \times \mathbf{r}|=\omega d=|\mathbf{v}|$, so these vectors have the same length and direction, hence are equal.
(b) By putting $\mathbf{w}=\omega \mathbf{k}$ and $\mathbf{r}=\langle x, y, z\rangle$ into the formula for the cross product $\mathbf{w} \times \mathbf{r}$, we get $\mathbf{v}=-\omega y \mathbf{i}+\omega x \mathbf{j}$.
(c) Again, a simple calculation using the determinant formula for the curl of $\mathbf{v}=-\omega y \mathbf{i}+\omega x \mathbf{j}$ gives $\operatorname{curl} \mathbf{v}=2 \mathbf{w}$.

3. Stewart 16.6.24

[5 pts] Find a parametric repreentation of the part of the sphere $x^{2}+y^{2}+z^{2}=16$ that lies between the planes $z=-2$ and $z=2$.

Solution:

The sphere is described in spherical coordinates by the equation $\rho=4$, which means we can use the other two spherical coordinates ϕ and θ as parameters, giving

$$
\mathbf{r}(\phi, \theta)=\langle 4 \sin \phi \cos \theta, 4 \sin \phi \sin \theta, 4 \cos \phi\rangle
$$

We need to impose the constraint that $-2 \leq z \leq 2$. Since $z=4 \cos \phi$, this becomes $-1 / 2 \leq$ $\cos \phi \leq 1 / 2$, so ϕ ranges from $\pi / 3$ to $2 \pi / 3$ (since ϕ is always between 0 and π). So the bounds on the parameters are $0 \leq \theta 2 \pi$ and $\pi / 3 \leq \phi \leq 2 \pi / 3$.

