$\begin{array}{c} \text{MATH 115, SUMMER 2012} \\ \text{QUIZ 3} \end{array}$

JAMES MCIVOR

There are problems on the back of this page, 20 points total. Write clearly and

in complete sentences. If you need extra paper, ask me.

(1)	(8 points)	Find all s	olutions to	the congru	tence $x^3 + 8$	$x - 5 \equiv 0$	mod (
(2)	(3 points) of the ord		unit in th	e ring $\mathbb{Z}/18$.	What are a	all the poss	ible va

(3) (2 points) If g is a primitive root mod 11, what is the order of g^4 mod 11?

(4) (2 points) Find the order of the element 7 in $\mathbb{Z}/9$.

- (5) (1 point each) True or False. No justification necessary.
 - (a) If $a^6 \equiv -1 \mod 13$, then a is a primtive root mod 13.
 - (b) If $f(x) \equiv 0 \mod p$ has exactly three solutions, then $f(x) \equiv 0 \mod p^2$ has at least three solutions.
 - (c) If m > 1 is odd, then every congruence $f(x) \equiv 0 \mod m$ has at least one solution mod m.
 - (d) If g is a primitive root mod p, then $g^{(p-1)(p-2)/2} \equiv -1 \mod p$.
 - (e) There are $\phi(11)$ primitive roots mod 12.