MATH 115, SUMMER 2012
 QUIZ 1 SOLUTION
 THURSDAY, JUNE 21ST

JAMES MCIVOR

Please show your work carefully and write neatly. Make sure to double-check your answers. There are 20 points total.
(1) (6 points) Calculate the greatest common divisor of 115 and 585 . Then express this gcd as a linear combination of 115 and 585.

Solution:

$$
\begin{aligned}
585 & =5 \cdot 115+10 \\
115 & =11 \cdot 10+5 \\
10 & =2 \cdot 5+0
\end{aligned}
$$

So 5 is the gcd. To write it as a linear combination, we have
$5=115-11 \cdot 10=115-11 \cdot(585-5 \cdot 115)=-11 \cdot 585+56 \cdot 115$
(2) (6 points) Explain why there are no integers x and y satisfying the equation

$$
986 x+406 y=-29
$$

Solution: There is a solution to this equation if and only if -29 is a multiple of the gcd of 986 and 406 , which we now compute:

$$
\begin{aligned}
986 & =2 \cdot 406+174 \\
406 & =2 \cdot 174+58 \\
174 & =3 \cdot 58+0
\end{aligned}
$$

So the gcd is 58 , which does not divide -29 , so there's no solution. Alternatively, you could just observe that some other common divisor, not necessarily the greates, divides both 986 and 406 , but not 29 . For instance, 2.
(3) (True or False - 2 points each)
(a) If n is any integer, then n and $n^{2}+n+1$ are relatively prime.

True: Using tricks for $\operatorname{gcd},\left(n, n^{2}+n+1\right)=\left(n, n^{2}+n+1-(n+1) \cdot n\right)=$ $(n, 1)=1$.
(b) If a, b, and c are three integers, not all zero, and their $\operatorname{gcd}(a, b, c)$ is 1 , then the gcd of $a b$ and c is 1 .

False: $a=c=2, b=3$ is a counterexample.
(c) If a, b, c are three integers such that $a c \mid b c$, then $a \mid b$. True: By hypothesis, there exists k such that $b c=k \cdot a c . c$ is nonzero, since if it were zero, we would be assuming that $0 \mid b c$, but zero doesn't divide anything. Thus we may cancel the c and obtain $b=k a$, which means $a \mid b$.
(d) If a and b are two integers such that $(a, 4)=(b, 4)=2$, then $(a+b, 4)=$ 4.

True: Our assumptions on a and b mean that 2 divides both, but 4 divides neither. So each of a and b have the form $4 k+2$, say $a=4 k_{1}+2$, and $b=4 k_{2}+2$. Thus $a+b=4\left(k_{1}+k_{2}\right)+4$, which is divisible by 4 . Thus the gcd is at least 4, but it can't be larger, since nothing larger than 4 divides 4 .

