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LECTURE 8

JAMES MCIVOR

Today we’ll use the concepts we’ve learned so far to introduce the notion of a
ring, which is a concept from abstract algebra of huge importance in number theory.

Abstract algebra relates different mathematical objects by comparing and con-
trasting “structural properties”. These include: ability to add and multiply, various
properties of these operations, such as whether there are inverses, commutativity,
associativity, etc. The basic types of “structures” one studies in algebra are groups,
rings, and fields, and later modules. In fact, every ring is a group “with some extra
structure”, and a field is a special type of ring. So it’s a little unnatural to start
with rings, but let’s do so anyway.

1. WHAT ARE RINGS?

The model for all rings is the set of integers, Z. Once you’ve isolated the key
properties of Z, you already understand, at least implicitly, the definition of a ring.
So what is Z like? It’s a set (an infinite set), in which we can A) add, B) subtract,
C) multiply, but we can’t really divide (that’s what the rational numbers Q are
good for). Subtraction is the same as adding a negative, so we can instead say that
Z is a set with two operations: addition and multiplication, and addition happens
to have inverses for every element of the set, but multiplication doesn’t. Also Z
comes with two special elements: 0 and 1. 0 is interesting because adding it does
nothing. 1 is interesting because multiplying by it does nothing. Then there are of
course some properties that addition and multiplication both satisfy: associativity,
commutativity, etc. That’s basically the definition of a ring!

Definition 1. A ring is a set R equipped with two operations 4+ and -, with the
following properties

(1) Existence of additive identity, 0

(2) Commutativity of +

(3) Associativity of +

(4) Every element has an additive inverse
(5) Existence of multiplicative identity, 1
(6) Associativity of -

(7) Commutativity of -

(8) Distributive law

The first four say that if we ignore the second operation, -, R is just an “abelian
group”. If you don’t know what that is, it doesn’t matter. The distributive law is
maybe the most interesting - it’s the only one that connects the two operations!

1This means that what we're really defining is a commutative ring - there are also rings
without this property.
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You may have seen axioms like this for a vector space in some linear algebra
class. There are some similarities, but be warned: a vector space is not a ring! In
a vector space, our set consists of the vectors, and then we also have some scalars
that we can multiply by. But the scalars and the vectors are different. In a ring,
there’s only one set, and the multiplication happens between two elements of the
set, not an element and some “scalar”.

Examples 1.1. (1) The mother of all rings is Z.

(2)

The set consisting of just one element, let’s call it 0, can be thought of as a
ring. To define the addition, we just have to say what is 0 4+ 0. It must be
0, since there’s nothing left in the set. Similarly 0-0 = 0. This means that
the multiplicative identity, which we usually would call 1, is in this case the
same as 0! Not a very interesting ring...

We denote by Z[z] the ring of all polynomials with integer coefficients. To
add and multiply just do the normal operations on polynomials. Note that
if we just look at the degree zero polynomials (the constant polynomials),
we see that they’re jst a copy of Z. We say that Z is a subring of Z[z].
Similarly, if we consider polynomials whose coefficients are allowed to be
rational numbers (or real numbers, or complex numbers), we get a ring Q[x]
(or R[z] or C[z]).

The set of rational numbers is itself a ring. Again, Z is a subring of Q,
because Q consists of all the integers, with some more stuff (namely frac-
tions whose denominator is not 1). Q has the property that every element
(except for 0!) has a multiplicative inverse. This isn’t part of the definition
of a ring, but it is allowed, and when we a ring has that property it’s called
a field. So Q is a field, as are R and C.

(Important Example) For us the most interesting ring is the following. Fix
a positive integer m > 1. Then consider the set of congruence classes of
integers modulo m. We can represent them by choosing a complete residue
system. Let’s call the congruence class of 0 [0], that of 1 [1], and so on, so
our set looks like {[0].[1],...[m — 1]}. This set is a ring, called the ring
of integers mod m, and denoted by Z/m. Some people write it as Z,,
or Z/mZ. The theorem on “properties of congruences” basically says that
this is a ring!

Anyway, this set of congruence classes is a ring - we can add and multiply
multiply modulo m. Some interesting things happen here. Say m = 6.
Then we have [3] - [2] = [6] = [0], since 0 = 6 mod 6. So in this ring,
two nonzero elements can multiply to make zero. We call such elements
zerodivisors, for obvious reasons. Also, we have seen that if a is relatively
prime to 6, then it has a multiplicative inverse. For example, 5 has an
inverse, namely itself, since [5] - [5] = [25] = [1], since 25 = 1 mod 6. An
element which has a multiplicative inverse is called a unit.

If every nonzero element is a unit, then the ring is a field. Since a is
a unit if and only if (a,m) = 1, Z/m will be a field if and only if all the
integers from 1 to m — 1 are prime to m. This happens if and only if m is
prime. So there are a bunch of finite fields Z/p, for various primes p. If
m is composite, then the ring m is not a field.
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2. HOMOMORPHISMS

If rings weren’t great enough already, things only get more interesting when we
consider multiple different rings, and functions between them. But we shouldn’t
care about just any function. In calculus, one focuses on continuous or differentiable
functions from R to R - these are special types of functions which are interesting
in that context. In the study of rings, the functions that are interesting are the
ones that are compatible with the addition and multiplication. This makes sense,
because that’s the only structure going on in a ring.

Definition 2. If R and S are two rings, a homomorphism from R to S is a
function ¢: R — S with the following properties:

(1) ¢(a+0b) = (a) + H(b)
(2) ¢(ab) = ¢(a)p(b)
(3) o(1) =1

The first two are about order of operations: we can add first in R, and then send
the answer over to S with ¢, or we can send both a and b over to S and add there;
either way, we should get the same result. Similarly for multiplication. The third
one says that “1 goes to 1”7. Notice that the two 1’s are different! The 1 on the left
lives in R, while the 1 on the right lives in S.

Often I'll call a homomorphism a“ring map” or even just a “map” if I'm feeling
lazy.

Similar to the comment in the previous section, notice how this differs from the
definition of a linear map. Also, if you've seen some abstract algebra, you may
know that there is a notion of a homomorphsim of groups, too, which is not the
same, since in a group there is obnly one operation, whereas in a ring there are two,
so there are more compatibility requirements for a function to be a homomorphism
of rings than just of groups. Of course, every ring is an abelian group, too, if we
just forget about the multiplication, and then a homomorphism of rings is also a
homomorphism of groups. But not every group can be made into a ring.

Examples 2.1. (1) The identity map Z — Z is a ring homomorphism.

(2) The map f: Z — Z given by f(n) = 2n is not.

(3) (Important Example) The function Z — Z/m which sends an integer n to
its residue class [n] mod m is a ring homomorphism.

(4) Sort of “opposite” to the previous example: Consider the function Z/4 — Z
sending [0] to 0, [1] to 1, [2] to 2, [3] to 3. This is not a ring map!

(5) When can we have a ring map Z/n — Z/m? Explore this in discussion
section.



