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1. Solving Congruences

Today we begin our study of finding solutions x to expressions of the form

f(x) ≡ 0 mod m

where f is a polynomial with integer coefficients. We will not able to say exactly
what x is, but we would like to at least determine the possible congruence classes
of x modulo m. As we will see, this is not easy.

We study today only linear equations. First, what are the solutions to

ax ≡ 0 mod m,

where a is fixed and x is our variable? You’d like to divide both sides by a but you
may not be able to! Sometimes you can, namely when a is prime to m (since that’s
the condition that a have a multiplicative inverse mod m) and then you just get
the one solution x ≡ 0 mod m. Let’s look at an example where you can’t.

Example 1.1. Solve 2x ≡ 0 mod 6.
We have obviously x ≡ 0 mod m. But also by inspection x ≡ 3 mod 6 works,

and no others do. Notice that here a = 2, m = 6, and so (a,m) = 2. Moreover, our
other solution, 3, is actually m/(a,m). This works in general.

Lemma 1. Let g = (a,m). The congruence ax ≡ b mod m has no solution if g
does not divide b, and a unique solution mod m

g if g|b.

Proof. Maybe “torus” picture.
Concretely, we want to find x, y ∈ Z such that ax + my = b. Divide through by

g = (a,m) to get.
a

g
x +

m

g
y =

b

g

This clearly shows that if b 6 |g, then there are no such x and y, so our congruence
has no solution. On the other hand, if g does divide b, then the above equation says

a

g
x ≡ b

g
mod

m

g

Now a
g and m

g (note they’re both integers) are relatively prime, so a
g has an inverse

mod m
g , and multiplying through by this inverse, call it a′ gives

x ≡ a′
b

g
mod

m

g

Since the multiplicative inverse is unique up to the modulus (which is now m
g ),

we’re done.
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That’s all there is to say about solving one linear congruence - either there’s
a unique solution mod m

g or there’s no solution, depending on the relationship

between b and (a,m). Following the proof also shows how to construct solutions
explicitly. (Do this in section!)

2. Chinese Remainder Theorem

Now we try to solve sytems of linear equations. We consider a system of con-
gruences of the form

x ≡a1 mod m1

x ≡a2 mod m2

...

x ≡ak mod mk

Draw picture.
The answer to this question is in the following important theorem

Theorem 1 (Chinese Remainder Theorem). In the system above, if the mi are
pairwise relatively prime, then the system has a solution x, which is unique modulo
m1m2 · · ·mk.

Proof. Write m = m1 · · ·mk for short. Each m/mi is prime to mi, since the mj

are relatively prime in pairs. Thus m/mi has an inverse mod mi, call this inverse
bi. Then the solution is

x =

k∑
i=1

m

mi
biai,

because if you reduce it mod mi, all terms except the ith one drop out, and when
working mod mi,

m
mi

bi ≡ 1,leaving just x ≡ ai.
�

There are many proofs, but this one is good because if you understand it, then
you know how explicitly construct solutions. Let’s see how.

3. Applications/Examples

Example 3.1. Solve the system of congruences

x ≡3 mod 4

x ≡1 mod 5

x ≡2 mod 3

Note that the three moduli are prime in pairs, so there is a solution, and it should
be unique modulo 4 · 5 · 3 = 60. To find it, we have to find inverses to the three
numbers m/m1 = 60/4 = 15, m/m2 = 60/5 = 12, and m/m3 = 60/3 = 20 mod
4,5, and 3, respectively.

What’s an inverse to 15 mod 4? Well, we might as well reduce 15 to 3, and then
it’s easy to see that 3 is its own inverse, since 3 · 3 = 9 ≡ 1 mod 4. Similarly,
to find an inverse to 12 mod 5, we reduce 12 to 2, and then we see that 3 is the
inverse, since 2 · 2 = 6 ≡ 1 mod 5. For the last one, 20 reduces to 2 mod 3, which
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is its own inverse. So we have the three inverses b1 = b2 = 3 and b3 = 2. Thus our
answer is

x =
∑ m

mi
biai = 15 · 3 · 3 + 12 · 3 · 1 + 20 · 2 · 2 = 135 + 36 + 80

which we can consider mod 60 to give 15 + 36 + 20 = 71 ≡ 11 mod 60.

Here is a different point of view on the theorem, which is more abstract-algebraic
in nature. Consider the above example, and imagine that the numbers a1 = 3, a2 =
1, a3 = 2 were changed. What possible values could they take? In the theorem,
they are allowed to be any integers, but we work only up to congruence mod the
various mi, so the only distinct situations that can arise are

a1 = 0, 1, 2, 3, a2 = 0, 1, 2, 3, 4, a3 = 0, 1, 2

These are just three complete residue systems for the three moduli. For each
such choice, the theorem says there’s a unique number x mod 60. So you give me a
triple (a1, a2, a3) and I give you a unique solution mod 60, that is, a number from
0 to 59. So the theorem says there’s a bijection

{0, 1, 2, 3} × {0, 1, 2, 3, 4} × {0, 1, 2} ↔ {0, 1, 2, 3, . . . , 58, 59},
where “×” means cartesian product of sets1.

Come back to this next theorem once we know what isomorphisms
are - skipped for now...

As a final application, we now consider congruences of higher degree, that is,
expressions of the form

f(x) ≡ 0 mod m,

where f(x) = anx
n + . . . + a1x + a0 is a polynomial with integer coefficients. The

degree of this congruence is the largest k for which ak 6≡ 0 mod m. The first
question to ask is: how many solutions are there, if any? This obviously depends
on the modulus, so we ask how the number of solutions changes when we multiply
moduli.

Theorem 2. If f(x) ≡ 0 mod m1 has a1 solutions (mod m1) and f(x) ≡ 0
mod m2 has a2 solutions (mod m2), and if a1, a2 are relatively prime, then f(x) ≡ 0
mod m1m2 has a1a2 solutions mod m1m2.

The theorem is very important - it tells us how to calculate the number of
solutions using the prime factorization of the modulus.

Proof. - Idea: construct bijection between solutions of f(x) ≡ 0 mod m1m2 and
pairs (x1, x2), where xi is a solution of f(x) ≡ 0 mod mi.

- 1) Given a sol’n mod m1m2, it reduces mod m1 and mod m2 give x1 and x2,
respectively. (Don’t need (m1,m2) = 1 here).

- 2) Conversely, start with a pair of solutions: f(x1) ≡ 0 mod m1 and f(x) ≡ 0
mod m2. The pair (x1, x2) corresponds to a unique residue class x mod m1m2 by
CRT (used relatively prime hypothesis here). Explicitly, we solve x ≡ x1 mod m1

and x ≡ x2 mod m2: we get a unique solution mod m1m2.
- The key fact is that this x reduces to xi mod mi. Because it means if we start

with a solution x mod m1m2, then reduce it mod m1, m2, then lift back up to the

1Actually each of these are rings, as we’ll see, and this can be taken as a cartesian product of
rings, and the bijection is actually an isomorphism of rings!
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larger modulus, we get our original x (up to ocngruence mod m1m2). Thus we have
a bijection. �

- Do examples of counting solutions with this theorem in section!


