
MATH 115, SUMMER 2012

LECTURE 5

JAMES MCIVOR

Last time:
- defined congruence - listed a bunch of properties, similar to “=”, except that

we can’t always “cancel”
- defined complete residue system mod m - one representative per residue class
- forgot to mention: if a ≡ b mod m, then (a,m) = (b,m).

1. Reduced Residue Systems and the φ-function

Since we can’t cancel numbers that aren’t prime to the modulus, we sometimes
want to omit these numbers from our complete residue system, and consider only
representatives from the various congruence classes that are relatively prime to m.
This is called a reduced residue system mod m.

Example 1.1. mod 10, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is a complete residue system mod
10. {1, 3, 5, 7} is a reduced residue system. Notice that 0 (or any multiple of m) will
almost1 never be in a reduced residue system mod m - since everything divides 0,
we always have (0,m) = m.

Fix some m. Although there are many different complete residue systems mod
m, they all have the same size, namely m. Similarly, all reduced residue systems
mod m all have the same size.

Definition 1. The size of a reduced residue system mod m is denoted by φ(m).
This defines a function of m, called Euler’s phi-function, or the totient function.

2. Euler’s Theorem and Fermat’s Little Theorem

Today we put the notion of congruence to good use by obtaining some neat
theorems. Here are some motivating questions, the types of questions number
theorists love. Compare them to the questions we mentioned at the beginning of
lecture 1.

(1) How can we tell if a to some power is congruent to 1 mod m?
(2) For which x is x ≡ ±1 mod m?
(3) Which integers can be written as a sum of two squares?

The following two theorems are very useful; the second follows from the first.
To motivate these two results, recall an important caution: you cannot substi-

tute congruent numbers as exponents! For example, even though 1 ≡ 5 mod 4, it
is not true that 21 ≡ 25 mod 4. So when can we use congruence to simplify large
exponents? Fermat had the answer, but Euler did it better.

1The only exception is if m = 1, which is allowed in the definition, but we never work with
this case, since it collapses the integers all down to one point: everything is congruent mod 1.
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Theorem 1 (Euler’s Theorem). If a and m are relatively prime, then

aφ(m) ≡ 1 mod m

Theorem 2 (Fermat’s Little Theorem). If p is a prime that doesn’t divide a, then

ap−1 ≡ 1 mod p.

Even if p does divide a, we still have ap ≡ a mod p.

To get this from Euler’s Theorem, just take m = p and note that for p prime
φ(p) = p− 1. In the case that p divides a both sides are zero!

Proof of Euler. Take a reduced residue system mod m. Multiply it through by a
- this gives you another reduced residue system since (a,m) = 1. Then for each
residue system, multiply all the elements together. This gives two integers, but
they’re congruent mod m, since each number of the first system is congruent to
exactly one number of the second system. In each product, the elements of the
original residue system appear, but one side they all got multiplied by a. Cancel
all those and you have the answer. �

Example 2.1 (Typical Exam Problem!). —— Maybe do this in section —–
You can use these theorems to compute incredibly large exponentiations modulo m.
For example say we want to find the value of 21296 modulo 14. 21296 is an incredibly
large number, so we’ve no chance of just computing and then reducing mod 14. So
we use congruences. First of all, we may as well reduce 21 mod 14 to get 7 mod
14. This was one of our properties - notice we can make this substitution (replace
21 by 7) in the base but not in the exponent. So we must compute 7296 mod 14.
This is still too large for direct computation. Since the modulus is not prime, we
must use Euler’s Thm instead of Fermat’s Little Thm. We compute φ(14): just list
all the numbers prime to 14 in order: 1,3,5,9,11,13. Hence φ(14) = 6. So Euler’s
theorem tells us 76 ≡ 1 mod 14. To see how this helps us, we need to extract
as many copies as we can of 76 from the big number 7296. We use long division:
296 = 49 · 6 + 2, so putting it all together:

21296 ≡ 7296 = 749·6+2 = (76)49 · 72 ≡ (1)21 · 72 ≡ 7 mod 14.

3. Wilson’s Theorem

We’re mostly interested in the question of when an integer n can be expressed
as a sum of squares, i.e., when can we find integers a, b such that n = a2 + b2? To
get there, we’ll need a few preliminary results, including Wilson’s Theorem.

First, note that when ab ≡ 1 mod m, we can think of a and b as multiplicative
inverses to each other, just as when working with rational numbers, 2 and 1

2 are
inverses. This is a little strange at first: in the “usual” integers, no numbers have
inverses except ±1 - that’s the whole point of using fractions! But when we work
modulo m all of a sudden some integers have inverses under multiplication.

Which numbers have inverses mod m? - those in a reduced residue system.:

Proposition 1. The integer a has a multiplicative inverse mod m if and only if
it’s relatively prime to m. The inverse is unique up to congruence.

- For example, let’s work mod 6. We have a complete residue system {0, 1, 2, 3, 4, 5},
and reduced residue system {1, 5} (so φ(6) = 2). Clearly 1 has an inverse, namely
1 itself - this is always true, for any modulus.
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- What is the inverse of 5? Well, it’s inverse must also be in our reduced residue
system, so it can only be 1 or 5. But 1 is already the inverse to 1, so 5 must be its
own inverse, too. And we can check: 5 · 5 = 25 ≡ 1 mod 6.

- But why doesn’t, say, 3 have an inverse? Well, suppose it did, call the inverse
x. So we have 3x ≡ 1 mod 6. But now multiply both sides by 2, to get 2 · 3 ·x ≡ 2
mod 6, which means 0 ≡ 2 mod 6, a contradiction.

This leads us to another natural question to ask: when is an element its own
inverse? For prime modulus, this is easy:

Proposition 2. x2 ≡ 1 mod p if and only if x ≡ ±1 mod p

Proof. Factor x2 − 1 mod p. Check x− 1 and x+ 1 are prime to p. �

Now here’s a neat theorem:

Theorem 3 (Wilson’s Theorem). Let p be prime. Then (p− 1)! ≡ −1 mod p.

Let’s see if this is believable. If p = 2, then (p− 1)! = 1! = 1, which is congruent
to -1 mod 2. If p = 3, then (p− 1)! = 2 ≡ −1 mod 3. How about p = 11? Already
this gets dificult: (p− 1)! = 10! = 3, 628, 800. We ask whether this is congruent to
-1 mod 11. That’s the same as adding 1, and asking whether 3,628,801 is congruent
to 0 mod 11, i.e., whether 11 divides 3,628,801. From last time, you know how to
do this: to test for divisibility by 11, take the difference of the alternating digits:
(3 + 2 + 8 + 1)− (6 + 8 + 0) = 14− 14 = 0, which is divisible by 11. Since factorial
grows so quickly, you can see that this is a very useful result.

Here’s a proof that’s slightly different from the one in the text, but I’ll omit a
few details that we cover in a few days.

Proof. We’ll take two different reduced residue systems and multiply them out,
similar to the proof of Euler’s Thm. One reduced residue system is the usual
{1, 2, . . . , p− 1}. Its product is clearly (p− 1)!. Now pick an a with 1 < a < p with
the property that {a, a2, . . . , ap−1} is a reduced residue system. We’ll see that this
is possible in a few days2. By the argument in the proof of Euler’s Thm, we have

(p− 1)! ≡ a · a2 · · · ap−1 mod p,

so we now just need to show that a · a2 · · · ap−1 is congruent to -1. Firstly,

a · a2 · · · ap−1 = a1+2+...+p−1 = a
1
2 (p−1)p,

by standard counting tricks. Let’s show this last thing is congruent to -1.
First, we checked the theorem for p = 2 above, so we can assume p is odd. By

Fermat’s Little Thm, using φ(p) = p − 1, we have ap−1 − 1 ≡ 0 mod p, and we
factor this to get

(a
p−1
2 − 1)(a

p−1
2 + 1) ≡ 0 mod p,

and since p is prime, it must therefore divide one of the two factors. Now we know
by Fermat that ap−1 ≡ 1 mod p, and in fact, there is no positive integer smaller
than p − 1 which does this (we will prove this in a few days). This means that in

particular, a
p−1
2 6≡ 1 mod p, since p−1

2 is smaller than p − 1. In other words, p

cannot divide (a
p−1
2 − 1), so it must divide (a

p−1
2 + 1). Thus

a
p−1
2 ≡ −1 mod p.

2This a is called a primitive root mod p.
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Now we’re basically done:

a
1
2 (p−1)p = (a

p−1
2 )p ≡ (−1)p ≡ (−1) mod p,

where we used in the last congruence the fact that p was odd.
�


