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Today we enter Chapter 2, which is the heart of this subject. Before starting,
recall that last time we saw the integers have unique factorization into primes. To
make sure you don’t take this for granted, consider the following example.

Example 0.1. (Number system without unique factorization)
Let R be the set of all numbers of the form a + b

√
−5. It’s a subset of C. In

this number system, we can add and multiply and subtract, which makes it a ring
(more on rings later). It contains Z. There is also a notion of primes in this ring.
The usual integers 2 and 3 are prime, but there are other primes too. The number
6 has two factorizations:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

so the “Fundamental Theorem of Arithmetic” fails for this number system!

1. Congruences - What are They?

Congruence is a relationship between two integers - it’s like equality, but a little
looser. Before defining congruence, let’s consider an informal example. Say we’re
studying an integer - we’ve called it x, but we don’t know exactly what it is (maybe
it’s a potential solution to some equation or something like that). If we find out
that x = 5, then there is no more to say - there is one and only one value for x. But
sometimes equations can have more than one solution, and we would still like to
know about them, even though in this case we can’t pin them down exactly (since
there are many possibilities). This is where congruence comes in handy. In such a
situation, we might find, for instance, that

x ≡ 5 mod 7,

which we read in English as “x is congruent to 5 modulo 7”. This means that x
can be any one of the numbers

5, 12, 19, 26, 33, 40, . . . ,

or even in the negative range: −2,−9,−16, . . .. In other words, x is “almost” equal
to 5, but ambiguous up to multiples of 7.

This ambiguity may seem annoying, but it’s already familiar from high school:
If you have to solve the equation

cosx =
√

2/2,

you will say “x = π/4 or x = 7π/4, and actually π/4 or 7π/4 plus any multiple of
2π will work, too.” So you’ve found two basic solutions, but there are a bunch of
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others obtained by adding or subtracting copies of 2π. Thus what you’ve found is
that

x ≡ π/4 mod 2π or x ≡ 7π/4 mod 2π

Definition 1. If a and b are two integers, and m is a positive integer1, when we say
a is congruent to b modulo m, written a ≡ b mod m, we mean that a = b+km
for some integer k.

An equivalent way to state this is that a and b are congruent modulo m if m
divides their difference, i.e., m|b−a. I prefer the above definition because intuitively,
“if we ignore the multiples of m, then a = b”. So some would say “congruent
mod m” means “equal up to multiples of m.”

Let’s see some examples of this notion in familiar settings.

Examples 1.1. (1) Even-ness and odd-ness (referred to as parity) can be
expressed with congruences: an integer n is even iff it is congruent to 0
modulo 2. For n is even iff 2 divides n iff 2 divides n-0 iff n ≡ 0 mod 2.
Similarly, the odd integers are exactly those which are congruent to 1
mod 2.

(2) As you know, we write integers in base 10 notation, so the different digits
correspond to different powers of ten. Intuitively, working mod 10 means
ignoring all the multiples of 10, so if we take a number, say 38854727, we
see that it is congruent to 7 modulo 10, since 38854727 = 7 + 3885472 · 10.
Similarly, when working modulo 100, we may just omit the digits in the
hundreds place and beyond: since 38854727 = 27 + 388547 · 100, we have
38854727 ≡ 27 mod 100.

2. Properties

Let’s now see some properties of congruences. You should pay attention to which
properties they have in common with equality, and also which properties of equality
don’t hold for congruence.

In the following, a, b, c, d are arbitrary integers, m a positive integer.

(1) (Symmetry) If a ≡ b mod m, then b ≡ a mod m.
(2) (Transitivity) If a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m.
(3) (Reflexivity) a ≡ a mod m.
(4) (Subtraction Rule) If a ≡ b mod m, then a− b ≡ 0 mod m.
(5) (Addition Rule) If a ≡ b mod m and c ≡ d mod m, then a + c ≡ b + d

mod m.
(6) (Multiplication Rule) If a ≡ b mod m and c ≡ d mod m, then ac ≡ bd

mod m.
(7) (Reduction of Modulus Rule) If a ≡ b mod m and d|m, d > 1, then a ≡ b

mod d.
(8) (Scalar Multiplication Rule) If a ≡ b mod m and c > 0, then ac ≡ bc

mod mc.

1Technically, we could allow m to be negative as well, but we don’t gain anything extra from
doing so.
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(9) (Polynomial Substitution Rule) If a ≡ b mod m and f(x) is a polynomial
with integer coefficients, then f(a) ≡ f(b) mod m

The first three properties can be summarized by saying that “congruence modulo
m is an equivalence relation”. The fourth was an observation we made above.
The names of the remaining properties I just made up, but hopefully they help you
remember them. Notice in (8) that the modulus m ALSO gets multiplied by c! It’s
also true that ac ≡ bc mod m but the statement in 8 is stronger. Let’s prove (6)
and (8) to give you an idea of how to work with congruences:

Proof. (of (6)) If a ≡ b mod m and c ≡ d mod m, then by the definition we have

a = b+ km and c = d+ lm

for some integers k and l. What we want to show is that ac − bd is a multiple of
m. So let’s write it out and replace a and c using the above equations:

ac− bd = (b+ km)(d+ lm)− bd = dkm+ blm+ klm2 = (dk + bl + klm)m,

which shows that ac− bd is a multiple of m, hence ac ≡ bd mod m. �

Proof. (of (8)) Let a ≡ b mod m and c > 0; to show ac ≡ bc mod mc, we have to
show that ac − bc is a multiple of mc. But we know that a − b = km for some k,
so multiplying this equation through by c does it. Notice that it even works for c
negative - the only reason we say c > 0 in the statement is that in our definition of
congruence we took the modulus m to always be positive. �

Since congruence is a way of talking about divisibility, it is natural to ask how
it relates to the gcd. This is related to a very important point: the main reason
congruence is different from equality is that you cannot always cancel something
from both sides!

For example, when dealing with equalities, if we know that

5x = 5y,

then it follows that x = y. We can cancel any nonzero number from an equality
and obtain another valid equality. This is not true for congruence! For example,

5 · 2 ≡ 5 · 4 mod 10,

but

2 6≡ 4 mod 10.

But sometimes it works. . . For example

3 · 4 ≡ 3 · 14 mod 10

and here we can cancel the three and get

4 ≡ 14 mod 10,

which is true. So why can we cancel the 5 and not the 3? The reason is that 5
shares a common factor with the modulus 10, which can sometimes cause a problem.
What we can say about cancelling terms from a congruence is the following:

Theorem 1. If ax ≡ ay mod m and (a,m) = 1, then we can cancel the a and get
x ≡ y mod m. More generally, ax ≡ ay if and only if x ≡ y mod (m/(a,m)).
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Informal version: If a is relatively prime to the modulus, we may divide both
sides by a. If not, we have to divide the modulus m by the gcd of a and m in order
to cancel the a.

Let’s see how this latter statement fixes our problem with 5s above. From the
congruence 5 · 2 ≡ 5 · 4 mod 10, we cannot conclude that 2 6≡ 4 mod 10, but we
get a valid congruence if we divide the modulus by the gcd of 5 and 10, namely 5,
giving 2 ≡ 4 mod 2, which is true.

Proof - see textbook.
Another useful and easy fact is the following:

Lemma 1. If two integers a and b are congruent mod m, then (a,m) = (b,m).

You should be able to prove this yourself, using the definition of congruence and
properties of the gcd. If you get stuck it’s in the book.

3. Residue Systems

You should think of the integers as the number line - just a bunch of dots lined
up, one for each integer. You should think of congruence modulo m as “collapsing”
the number line: we treat all the numbers congruent to zero as one point, all those
congruent to one as another point, all those congruent to two as another, and so
on, all the way up to m − 1. For when we get to m, it’s not there - we already
collapsed it into the same point as 0, since 0 ≡ m mod m.

. . . • ◦ • • ◦ • • ◦ • . . .

. . . −3 −2 −1 0 1 2 3 4 5 . . .

In the diagram above, all the hollow circles are congruent to 1 mod 3 - we
identify them all. The collapsed number line mod 3 looks simply like this:

• • •
0 1 2

This is one reason why congruence is great: it reduces the study of integers (an
infinite set) to the study of a finite set. Of course, we lose some information when
we do so, namely, when working modulo 3 we can’t tell 5 apart from 8 or from -4,
etc., since they all get collapsed together.

Let’s try to make this “collapsing” a bit more rigorous. We mentioned above,
under “Properties,” that congruence modulo m is an equivalence relation on the
set Z of integers. This means it divides up the integers into disjoint subsets, whose
union is all of Z. These subsets are called congruence classes, or residue classes
modulo m. For example, working mod 3 as above, there are three congruence
classes:

{. . .− 3, 0, 3, 6, . . .}
{. . . ,−2, 1, 4, 7, . . .}
{. . . ,−1, 2, 5, 8, . . .}

Clearly these three are disjoint subsets whose union is all2 of Z. Now rather than
write them out like this every time, it is convenient to just work with a represen-
tative of each congruence class. Usually we would just use 0,1,2, but in fact we
may choose one from each class arbitrarily. The set obtained by picking exactly

2If S is any set, a collection of disjoint subsets S whose union is S is called a partition of S.
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one representative for each congruence class is called a complete residue system
modulo 3. The same goes for other moduli besides 3. So {0, 1, 2} is a complete
residue system, and so are {8,−6, 10} and {n, n+1, n+2}, where n could be any in-
teger. Notice that once we have a complete residue system, ifwe take any arbitrary
integer, it will be congruent to exactly one of the representatives in the system,
because every integer falls into exactly one congruence class.


