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Last time:
- The ideal consisting of linear combinations of a and b is generated by their gcd.
- how to calculate gcd and write it as a linear combination of a and b.
- properties of gcd, especially (a, b) = (a, b+ ax)

Today - LCM and primes
Random definition - for sets of more than two integers, relatively prime vs.

relatively prime in pairs. If we have more than two integers, say a1, . . . , an, then
there are two types of “relative primes-ness” we can require. Firstly, if the gcd
(a1, . . . , an) of all n of them is 1, we say they are relatively prime. If, taken two
at a time, the gcds (ai, aj) are each 1, we say they are relatively primes in pairs
or pairwise relatively prime. This is stonger than just being relatively prime

Example 0.1. 4,6, and 3 are relatively prime (the only positive divisor common
to all three is 1), but not pairwise relatively prime, since (4, 6) = 2 and (6, 3) = 3.

This next property will be crucial when we study primes:

Proposition 1. If c|ab and b and c are coprime, then c must divide a.

Proof. The conlcusion is the same as saying that a ∈ (c). We’re given that ab ∈ (c),
and that 1 can be written as a linear combination of b and c, say 1 = bx + cy.
Multiply by a, so a = abx+ acy. Since abx and acy are both in (c), so is a (using
closure uner +) �

1. LCM

There is a sort of counterpart to gcd, the least common multiple:

Definition 1. If a1, . . . , an are n nonzero integers, we say that b is a common
multiple of the ai if each ai divides b. The least common multiple (lcm) of
the ai is the smallest positive integer which is a common multiple of all the ais. It
is denoted [a1, . . . , an].

The lcm can also be characterized in terms of ideals:

Theorem 1. Let a1, . . . , an be nonzero integers. The set of common multiples of
the ai forms an ideal, which is generated by the lcm of the ai.

Proof. - Set of common multiples of the ai closed under + and scalar mult.
- So it’s an ideal, call it I, therefore principal, generated by some l ∈ Z.
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- This l is therefore a common multiple. Why the least? If there were a smaller
one, it would generate I instead of l.

�

gcd and lcm have a nice relationship:

Proposition 2. For a, b not both zero (so their gcd and lcm actually exist), we
have the formula

(a, b) · [a, b] = |ab|

- The vertical lines on the right hand side are absolute value.
- We’ll prove this soon using prime factorization.

2. Primes and Unique Factorization

The basic building blocks for integers using multiplication are the primes:

Definition 2. An integer p > 1 is prime if it has no positive divisors except 1 and
p.

- sieve of eratosthenes?
- infinitely many primes. The classic proof: Suppose for contradiction there are

finitely many, say p1, . . . , pk. Then look at the number 1+p1 · · · pk. You may think
at first that this number is itself prime, but that’s not necessarily true. If it is
prime, then we’re done, since it’s a new prime and that contradicts the fact that
p1, . . . , pr were the only ones. If it’s not prime, then it at least has a prime factor
q, say n = qr (where r may or may not be prime). But then this q is a new prime,
not in the list. If it were one of the pi, then we would have q|n and q|p1 · · · pk, so
q|(n− p1 · · · pk) = 1, contradiction - primes can’t divide 1!

The gcd is easy to calculate when one of the terms is prime:

Lemma 1. 1) if p 6 | a, the gcd of a and p is 1.
2) if p|a, the gcd of a and p is a.

This comes straight from the definition: first we consider the positive common
divisors of p and a. They can only be 1 or p, since these are the only positive
divisors of p. If we assume that p is not a divisor of a, then 1 is the only positive
common divisor, and it is therefore their gcd. If p is a divisor of a, then 1 and p
are the only positive common divisors, so p is the greatest one.

Here’s a key property of primes, that we will use all the time:

Lemma 2. If p is prime, and a, b are any integers, then p|ab, then either p|a or
p|b.

Proof. Let p be a prime, and suppose p|ab but p 6 | a. We will show that p|b. As
noted above, the gcd (a, p) = 1. Now remember from last lecture that the ideal
generated by the gcd is the same as the set of Z-linear combinations of a and p.
This means that the gcd itself can be written as a linear combination:

1 = ax+ py

for some integers x and y; now multiply by b:

b = abx+ pyb.

Since p|ab, it divides abx, and it clearly divides pyb, so p|b. Done.
�
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The same argument shows that if p divides a1 · · · an, then it must divide at least
one of the ais. The most familiar fact about primes is that we can decompose any
(nonzero) integer into a product of primes.

Theorem 2 (Fundamental Theorem of Arithmetic). If n is any nonzero integer,
then n can be uniquely expressed as n = ±pa11 · · · parr , where the pi are prime num-
bers, with p1 < p2 < . . . < pr, and each ai > 0.

Note that we can even obtain 1 in this way, by taking r = 0. In other words,
“1 is the product of no primes”, sometimes called the “empty product”. Note also
that we usually only care about factoring positive integers, in which case we can
drop the ±.

Proof. The proof has two main steps: first we show that every integer can be
factored in this way, and then we show that it’s unique. First note that if n can be
factored uniquely, then so can −n, so we might as well assume n is positive from
now on. To see that there is a factorization, we may use (“strong”) induction. The
base case, n = 1, gives the “empty product” mentioned above. So now assume that
all integers ≤ n can be factored into primes (we don’t care about uniqueness yet).
We show n can be factored into primes. Well, n is either prime, or not. If n itself is
prime, we’re done: take r = 1, p1 = n, and a1 = 1. If n is composite (not prime),
then by definition n has a proper divisor a|n, where 1 < a < n. Thus there is some
b such that ab = n. But a and b are both less than n, so they each factor into
primes, hence so does n.

Next we show the uniqueness. In general, to show something’s unique, you take
two of them, and then prove that they must be the same. So for a given integer n,
we will pick two factorizations by primes:

n = pa11 · · · parr and n = qb11 · · · qbss
where the qi and pi are primes, with p1 < . . . pr and q1 < . . . < qs. We wish to
show that these are the same factorization, i.e., that r = s, pi = qi for all i, and
ai = bi for all i. We can use induction on n. For the base case, if n = 1, then there
are no primes in either factorization (the “empty product” again). So r = s = 0
and there is nothing else to say. Now assume we’ve proved that every integer < n
can be factored uniquely into primes. Looking at the first factorization, we see
that pr divides n. So pr must divide qb11 · · · qbss , since it’s equal to r. But by the
lemma above, since pr is prime, it must divide one of the factors. Since they’re
all prime, this means pr = qi for some i. Now we cancel out this term from both
factorizations. Then the resulting number, which is n/pr = n/qi, is smaller than
n, so can be factored uniquely, so all the other primes in the two factorization are
equal, i.e., p1 = q1, a1 = b1, etc. Thus our factorizations of n are both the same.

�

Other Notation

We will also write
n =

∏
p

pα(p)

for the factorization of n into primes. The notation
∏

just means product, and the
subscript p means we take the product over all primes p - namely, for each p, we
take p to some power α(p), and multiply these all together. It doesn’t make sense
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to multiply the infinitely many primes (we will see that there are infinitely many
shortly), so most of the α(p)’s must be zero.

For example, let n = 84. It factors as 84 = 2 ·2 ·3 ·7. So if we write 84 =
∏
pα(p),

then in this case α(2) = 2, α(3) = 1, and α(7) = 1, while all other α’s are zero,
meaning those other primes do not occur in the factorization.

This notation can be useful for working with gcd and lcm:

Lemma 3. Let a =
∏
p p

α(p) and b =
∏
p p

β(p). Then

(1) (a, b) =
∏
p p

min(α(p),β(p)), and

(2) [a, b] =
∏
p p

max(α(p),β(p))

This makes sense intuitively: how do you form the biggest common divisor? Just
take as many primes as you can that occur in both factorizations.


