MATH 115, SUMMER 2012 LECTURE 26

JAMES MCIVOR

- first finish the end of previous lecture, which says roughly that if a line meets a curve of degree d in more than d points, then the line is actually a component of the curve.
 - -Today we study projective space in dimensions one and two.
- -Motivation: Consider the standard conics (degree 2 curves): circle, ellipse, hyperbola, parabola.
 - -The first two are "closed loops", but the second two aren't.
- -This dramatic geometric difference is very strange, since algebraically they're all just quadratic equations.
- Idea: we expand our geometry to include some extra "points at infinity", in such a way that even the hyperbola and parabola "close up", so that all conics basically look the same.

1. The Projective Line

Definition 1. The **projective line over** \mathbb{R} , denoted $\mathbb{P}^1(\mathbb{R})$, is the set of all lines through the origin in \mathbb{R}^2 .

A nonzero point P in \mathbb{R}^2 determines a point of $\mathbb{P}^1(\mathbb{R})$ - namely the line through the origin and P.

But different points in \mathbb{R}^2 give us the same point of $\mathbb{P}^1(\mathbb{R})$,

More precisely, two points in \mathbb{R}^2 determine the same point of \mathbb{P}^1 if they lie on the same line.

So (a, b) and (c, d) determine the same point in \mathbb{P}^1 if $(a, b) = \lambda(c, d) = (\lambda c, \lambda d)$ for some nonzero scalar λ .

Thus we arrive at the following equivalent definition of $\mathbb{P}^1(\mathbb{R})$:

Alternate Definition $\mathbb{P}^1(\mathbb{R})$ is the set of *nonzero* vectors (x, y), where $x, y \in \mathbb{R}$, and two vectors (x, y) and (x', y') are considered the same if $x' = \lambda x$ and $y' = \lambda y$ for some $\lambda \neq 0$.

We can visualize \mathbb{P}^1 as follows. For each line through the origin, it meets the unit circle exactly twice.

- for each such line, pick the point on the circle in the right half of the plane (for the vertical line, pick (0,1)
 - thus \mathbb{P}^1 is in bijection with this upper hemisphere.
- but something's funny if you walk around the semicircle, and go all the way to the left, you return to the point on the far right!
 - Draw picture

2. Homogeneous Coordinates on $\mathbb{P}^1(\mathbb{R})$

By the alt definition above, we can write points in \mathbb{P}^1 as nonzero vectors, but the vectors are a little ambiguous, because multiples of the same vector count as the same point. If (x,y) is a nonzero vector in \mathbb{R}^2 , we write the corresponding opint of \mathbb{P}^1 as [x:y], and we call x and y the **homogeneous coordinates** on \mathbb{P}^1 .

- Important: the homogeneous coordinates cannot both be zero, and they are only defined up to scalars.
- For example, [3:2] = [6:4] in \mathbb{P}^1 , and [0:0] is *not* a point of \mathbb{P}^1 , but [0:1] and [1:0] are.
 - we distinguish two types of points:
- if $x \neq 0$, we may divide through both coordinates by x and get $[1:\frac{y}{x}]$. Every point [x:y] with x nonzero may be written this way.
- on the other hand, if x=0, then our point looks like [0:y]=[0:1] we are allowed to divide by y because $y\neq 0$, since both coordinates are not allowed to be zero. So we have:

$$\mathbb{P}^{1}(\mathbb{R}) = \{ [1:m] \mid m = \frac{y}{x} \in \mathbb{R} \} \cup \{ [0:1] \}$$

-The set of points $\{[1:m]\}$ is in bijection with \mathbb{R} , since m can be any real number. So \mathbb{P}^1 can be written as the union of \mathbb{R} with one extra point [0:1], which we call the "point at infinity".

3. Functions on \mathbb{P}^1

- -If we have a polynomial in two variables x, y, we can think of it as a function on \mathbb{R}^2 indeed, for any point (x, y), we plug it into f, and it outputs a real number.
- -So can we do the same with the homogeneous coordinates on \mathbb{P}^1 ? That is, given $[x:y] \in \mathbb{P}^1(\mathbb{R})$, can we plug it into f and get a number.
- -not really, because the points [x:y] and [2x:2y] are the same point in \mathbb{P}^1 , but when we plug in f(x,y) and f(2x,2y), we'll probably get two different answers. So this function is not well-defined!
- If we have a homogeneous polynomial F, i.e., where all terms have the same degree d, then you can check that $F(2x, 2y) = 2^d F(x, y)$. More generally, $F(\lambda x, \lambda y) = \lambda^d F(x, y)$ for any nonzero scalar λ . So this is still not well-defined!
- however, it does make sense to talk about the points where F is zero. For suppose we choose a point [x:y] in \mathbb{P}^1 , and plug it into the homogeneous F and get F(x,y)=0. Now choose a different way of writing the same point, say [x:y]=[5x:5y]. Then we want to see that F is zero when we plug in this other way of writing the same point. It is, since $F(5x,5y)=5^dF(x,y)=5^d\cdot 0=0$.
- conclusion: polynomials, even homogeneous ones, DO NOT give function n \mathbb{P}^1 , like they do on \mathbb{R}^2 .
- but for homogeneous polynomials F, the set of points in \mathbb{P}^1 where F is zero does make sense. We will use this to define curves in \mathbb{P}^2 in the next section.