- first finish the end of previous lecture, which says roughly that if a line meets a curve of degree \(d\) in more than \(d\) points, then the line is actually a component of the curve.

- Today we study projective space in dimensions one and two.
- Motivation: Consider the standard conics (degree 2 curves): circle, ellipse, hyperbola, parabola.
 - The first two are “closed loops”, but the second two aren’t.
 - This dramatic geometric difference is very strange, since algebraically they’re all just quadratic equations.
 - Idea: we expand our geometry to include some extra “points at infinity”, in such a way that even the hyperbola and parabola “close up”, so that all conics basically look the same.

1. The Projective Line

Definition 1. The **projective line over** \(\mathbb{R}\), denoted \(\mathbb{P}^1(\mathbb{R})\), is the set of all lines through the origin in \(\mathbb{R}^2\).

A nonzero point \(P\) in \(\mathbb{R}^2\) determines a point of \(\mathbb{P}^1(\mathbb{R})\) - namely the line through the origin and \(P\).

But different points in \(\mathbb{R}^2\) give us the same point of \(\mathbb{P}^1(\mathbb{R})\),

More precisely, two points in \(\mathbb{R}^2\) determine the same point of \(\mathbb{P}^1\) if they lie on the same line.

So \((a, b)\) and \((c, d)\) determine the same point in \(\mathbb{P}^1\) if \((a, b) = \lambda(c, d) = (\lambda c, \lambda d)\) for some nonzero scalar \(\lambda\).

Thus we arrive at the following equivalent definition of \(\mathbb{P}^1(\mathbb{R})\):

Alternate Definition \(\mathbb{P}^1(\mathbb{R})\) is the set of nonzero vectors \((x, y)\), where \(x, y \in \mathbb{R}\), and two vectors \((x, y)\) and \((x', y')\) are considered the same if \(x' = \lambda x\) and \(y' = \lambda y\) for some \(\lambda \neq 0\).

We can visualize \(\mathbb{P}^1\) as follows. For each line through the origin, it meets the unit circle exactly twice.

- for each such line, pick the point on the circle in the right half of the plane (for the vertical line, pick \((0, 1)\)
- thus \(\mathbb{P}^1\) is in bijection with this upper hemisphere.
- but something’s funny - if you walk around the semicircle, and go all the way to the left, you return to the point on the far right!

- Draw picture
2. Homogeneous Coordinates on $\mathbb{P}^1(\mathbb{R})$

By the alt definition above, we can write points in \mathbb{P}^1 as nonzero vectors, but the vectors are a little ambiguous, because multiples of the same vector count as the same point. If (x, y) is a nonzero vector in \mathbb{R}^2, we write the corresponding point of \mathbb{P}^1 as $[x : y]$, and we call x and y the **homogeneous coordinates** on \mathbb{P}^1.

- Important: the homogeneous coordinates cannot both be zero, and they are only defined up to scalars.
 - For example, $[3 : 2] = [6 : 4]$ in \mathbb{P}^1, and $[0 : 0]$ is not a point of \mathbb{P}^1, but $[0 : 1]$ and $[1 : 0]$ are.
 - we distinguish two types of points:
 - if $x \neq 0$, we may divide through both coordinates by x and get $[1 : \frac{y}{x}]$. Every point $[x : y]$ with x nonzero may be written this way.
 - on the other hand, if $x = 0$, then our point looks like $[0 : y] = [0 : 1]$ - we are allowed to divide by y because $y \neq 0$, since both coordinates are not allowed to be zero. So we have:
 $$\mathbb{P}^1(\mathbb{R}) = \{[1 : m] | m = \frac{y}{x} \in \mathbb{R} \} \cup \{0 : 1\}$$
 - The set of points $\{[1 : m]\}$ is in bijection with \mathbb{R}, since m can be any real number. So \mathbb{P}^1 can be written as the union of \mathbb{R} with one extra point $[0 : 1]$, which we call the “point at infinity”.

3. Functions on \mathbb{P}^1

- If we have a polynomial in two variables x, y, we can think of it as a function on \mathbb{R}^2 - indeed, for any point (x, y), we plug it into f, and it outputs a real number.
 - So can we do the same with the homogeneous coordinates on \mathbb{P}^1? That is, given $[x : y] \in \mathbb{P}^1(\mathbb{R})$, can we plug it into f and get a number.
 - not really, because the points $[x : y]$ and $[2x : 2y]$ are the same point in \mathbb{P}^1, but when we plug in $f(x, y)$ and $f(2x, 2y)$, we’ll probably get two different answers. So this function is not well-defined!
 - If we have a homogeneous polynomial F, i.e., where all terms have the same degree d, then you can check that $F(2x, 2y) = 2^d F(x, y)$. More generally, $F(\lambda x, \lambda y) = \lambda^d F(x, y)$ for any nonzero scalar λ. So this is still not well-defined!
 - however, it does make sense to talk about the points where F is zero. For suppose we choose a point $[x : y]$ in \mathbb{P}^1, and plug it into the homogeneous F and get $F(x, y) = 0$. Now choose a different way of writing the same point, say $[x : y] = [5x : 5y]$. Then we want to see that F is zero when we plug in this other way of writing the same point. It is, since $F(5x, 5y) = 5^d F(x, y) = 5^d \cdot 0 = 0$.
 - conclusion: polynomials, even homogeneous ones, DO NOT give function on \mathbb{P}^1, like they do on \mathbb{R}^2.
 - but for homogeneous polynomials F, the set of points in \mathbb{P}^1 where F is zero does make sense. We will use this to define curves in \mathbb{P}^2 in the next section.