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LECTURE 26

JAMES MCIVOR

In the next few lectures we will try to use geometric ideas to get number the-
ory results. The motivating example is our first proof of the Pythagorean triples
theorem.

We took the (homogeneous) equation x2 + y2 = z2 and divided through by z2

to get the (inhomogeneous) equation X2 + Y 2 = 1. The set of pairs (x, y) of real
numbers satisfying this equation describes a curve (a circle) in the real plane R2.

We were interested in rational values of x, y satisfying this equation, since those
give us back the integer Pythagorean triples. To find all rational points (x, y) on
the circle, we first picked one, namely (−1, 0), and looked at all lines with rational
slope through this point. Each of them intersects the circle in one other point, and
we obtain all rational points this way.

What are the key issues in this argument?

(1) (Essential) There is at least one rational point on the curve X2 + Y 2 = 1.
(2) (Very important) For each line with rational slope, it passes through the

circle in exactly one other point.
(3) (Not so important) The slope at this point is vertical (so we didn’t double

count any rational points)

We want to try to generalize this type of argument, and need to make sure we
understand when these conditions are satisfied.

1. Plane Curve

Definition 1. A plane curve of degree d is a set of points (x, y) in R2 satisfying
some polynomial1 equation f(x, y) = 0.

Examples 1.1. (1) The circle above.
(2) The cubic equation y2 = x3 − x - this is an example of an elliptic curve,

which we will study more closely in the next few lectures.
(3) The equation x2− y2 = 0 defines an “X” shape - the union of the two lines

y = x and y = −x. We call this a curve of degree 2, even though it’s the
union of two lines.

(4) The equation (y − x)3 = 0 defines a “tripled line” it looks like the line
y = x, but each point has multiplicity three, because of the exponent 3.

As you see from the last two examples, the degree should be determined from
the equation, and not from the shape of the curve geometrically.

1Some people would call this an algebraic plane curve, to emphasize the fact that f is a
polynomial, as opposed to, say, an exponential or trigonometric function.
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Definition 2. If f is a polynomial, Cf (R) denotes the set of real points on the
curve, that is

Cf (R) = {(x, y) | f(x, y) = 0, x, y ∈ R}
This is exactly the curve itself. Similarly Cf (Q) is the set of rational points on
the curve, that is

Cf (Q) = {(x, y) | f(x, y) = 0, x, y ∈ Q}

Clearly Cf (Q) ⊆ Cf (R), but note that Cf (Q) may be empty - there are curves
with no rational points. Equivalently, there are equations with no rational solutions,
for example the double line x2 = 2.

In fact, even the set of real points may be empty! For example, the equation
x2 + y2 + 1 = 0 has no solutions in real numbers. In such cases (actually, in all
cases) it is useful to consider also the set of complex points on the curve, which
is

Cf (C) = {(x, y) | f(x, y) = 0, x, y,∈ C}
The problem is that the set of complex points is almost always impossible to

draw, so we mostly stick to real numbers in this course. Nevertheless, we have
Cf (Q) ⊆ Cf (R) ⊆ Cf (C).

2. Curves of Degree 2

A curve of degree 2 is called a conic. These are just the solutions to quadratic
equations in two variables. If the equation f(x, y) = 0 defining the conic factors
into two linear factors it is degenerate (this is when the conic is actually just the
union of two lines); otherwise we call it nondegenerate.

We argued in the Pythagorean triples lecture that given one rational point P on
a circle, we could produce infinitely many more by looking at lines through P with
rational slope and seeing where they intersect the circle. For every such line except
those lines tangent to P , the line met the circle in exactly one other point.

We also made a similar argument for an ellipse. We’d like to say that the same
argument will go through for any conic. Namely, we’d like to assert the following:

“Almost True” Statement: Every line meets a conic in two (not necessarily
distinct) points.

This is basically true, but there are two problems which may occur and prevent
us from making this general of a claim.

Problems:

(1) The conic is degenerate. Example: xy = 0, the union of two lines; or
(y − x)2 = 0, a doubled line.

(2) The second point of intersection is at infinity. Example: The conic C, and
a vertical line through the origin.

- draw pictures of the examples.
- we can bypass the second problem for the moment by considering only conics

of the form ax2 + by2 = c.
- in this case, an argument just as in the Pythagorean Triples lecture shows:

Proposition 1. If the conic ax2 + by2 = c has any rational points, then it has
infinitely many.
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Of course, such a conic may have no rational points.

Examples 2.1. (1) The conic x2 + y2 + 1 = has no rational points, because it
doesn’t even have any real points!

(2) The conic x2 + y2 = 3 has no rational points, as can be seen by supposing
there is a rational solution, and then reducing mod 3.

In fact, the above two examples are the only ways there can fail to be rational
points, according to the following incredible theorem:

Theorem 1. (Hasse’s Local-Global Principle) If a conic f(x, y) = ax2+bxy+cy2 =
0 has a real solution and also has solutions mod p for every prime p, then it has a
solution in rational numbers.

The solutions in real numbers and mod p are called local solutions, while the
solutions in rational numbers are called global solutions.

We won’t prove this, but we may occasionally use the following much simpler
criterion:

“No-Solution-Test”: If an equation has no solution mod p for some prime p,
then it has no solution in integers.

This is an easier statement because the conclusion is that there is no solution in
integers, not necessarily rationals.

You may want to compare this with the two ways that a system of linear equa-
tions can fail to have a solution from lecture 23 - 1) a “rank problem” (no real
solutions), or 2) a “divisibility problem” (no solutions mod p for some p). Thus
there is a “local-global” principle for linear systems of equations, too, just like the
one above for certain types of conics.

3. Curves of Degree Greater than 2

For the most part we understand rational points on conics - if there’s one, there
are infinitely many! The only problem we haven’t addressed is the example of
y = x2, and the vertical line through the origin. We’ll understand this better once
we’ve talked about the projective plane.

First let’s look at curves of higher degree.

Question: If we pick a point on our curve (rational or not) and take a line
through that point, where will the line meet the curve (besides in the given point)?

The answer is the following theorem:

Theorem 2. If C is a curve of degree d and L is a line, then C ∩L either consists
of at most d points, or else every point of L lies on the curve C, in which case we
call L a component of C.

Proof. Let C be given by the equation f(x, y) = 0, where f is a polynomial of two
variables x, y of degree d. First assume the line L is not vertical (which corresponds
to slope = ∞). Then L has an equation of the form y = mx+ b for some m, b ∈ R.
Points (x, y) satisfying this equation and the equation for C correspond to values
of x satisfying

f(x,mx + b) = 0,
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which is just a polynomial in x of degree d. The fundamental theorem of algebra2

says that this equation has exactly3 d solutions if x is allowed to be complex. Now
some or all of these complex numbers may actually be real, but in any case, if we
look at only the real number solutions, there are at most d of them.

�

2If you haven’t seen this theorem, don’t worry.
3Some of the solutions may be repeated, for example x2 = 0 has the “double root” x = 0.


