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1. Fermat’s Last Theorem, n = 4 Case

Recall that one of the most famous problems in number theory (indeed, in all of
mathematics!) was Fermat’s Last Theorem. The question was whether, for a give
value of n, there existed positive integers x, y, z satisfying the equation

xn + yn = zn

Fermat scribbled somewhere that he had a proof that there were NO solutions
when n > 2, but nobody ever found his proof, and it took until the 1990s for
mathematicians to prove it!

Today we prove it in the special case n = 4. Surprisingly, this, and not n = 3, is
the easiest case.

First observe that it follows from the following result:

Theorem 1. The equation
x4 + y4 = z2

has no solution in positive integers.

For if we had a solution to the Fermat equation x4 + y4 = z4, then replacing z
by z2 would give a solution to the equation in the theorem.

2. Fermat’s “Method of Descent”

This is a brilliant idea: we show that there can be no solution, for if there were,
we could always produce another solution with a smaller value of z - this is the
“descent”. This is a contradiction, because, e.g., we might get to z = 1, and there
is no smaller positive integer.

How do we establish the descent1?
- Suppose we have a solution x, y, z to x4 + y4 = z2.
- Then x2, y2, z is a Pythagorean triple.
- we can assume it’s primitive, for if some prime p divides all three, then p|x

and p|y, so we can divide out the p and get a new triple
(

x
p

)2

,
(

y
p

)2

, z
p . Continue

doing so until they’re relatively prime.
- By the results of the last lecture, we can assume x is even and y is odd.
- Also from last lecture, we know there are coprime integers a, b such that

x2 = a2 − b2

y2 = 2ab

z = a2 + b2

1Note: the following argument is a little different from the one in your book.
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- Look at y2 = 2ab. Since 2ab is a square, and a, b are coprime, one of a, b must
be two times an odd square, and the other must be an odd square.

- Now look at the first equation: it says x2 + b2 = a2, and since a, b are coprime,
x, y, z form a primitive Pythagorean triple.

- Thus we can find relatively prime r, s such that

x = r2 − s2

a = 2rs

b = r2 + s2

- we said above that one of a, b was 2 times an odd square, and the other an odd
square; now we know that a is even. So a = 2m2 and b = n2, where m,n are odd.

- now we have

2m2 = a = 2rs, so m2 = rs

-by a lemma from last lecture, since r, s are coprime and their product is a square,
they are themselves squares, say r = u2, s = v2.

- then

n2 = b = r2 + s2 = u4 + v4

- thus from our original solution x, y, z we have produced a new solution u, v, n
- but notice z = a2 + b2 = a2 + n4, so n4 = z − a2, hence n < z.
- Thus we have our descent.
- To repeat from above, this is a contradiction because we cannot keep producing

smaller and smaller positive integers.
- since given any positive integer solution x, y, z, we get the descent, there cannot

be any positive integer solutions at all.

3. Other Examples of Descent

The method of descent is very useful. It’s a little bit like mathematical induction,
but backwards. It may not be quite as useful as induction, but is still a very useful
problem-solving tool. Here are some more applications of this idea:

Example 3.1. Problem: Prove that the equation x3 + 2y3 + 4z3 = 0 has no
solutions in integers except the trivial solution x = y = z = 0.

Solution: Suppose we have a nontrivial solution x, y, z. We will produce another
solution x′, y′, z′ with |x′| < |x|. Since the absolute value of x cannot decrease
forever, this descent will provide a contradiction.

Since x3+2y3+4z3 = 0, x must be even, say x = 2k. Then dividing the equation
by 2 gives

y3 + 2z3 + 4k3 = 0

Now y must be even, say y = 2m. Dividing by 2 again gives

z3 + 2k3 + 4m3 = 0

so z is even, say z = 2n. Dividing by 2 one last time, we get

k3 + 2m3 + 4n3 = 0

But |k| = |x|/2 < |x|, so we have desecent, giving a contradiction.
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Example 3.2. Problem: Show that if d is not a perfect square, then
√
d is an

irrational number.

Solution: Suppose d is rational. Let a = b
√
dc, and put

√
d = a + b

c , where

0 < b
c < 1, so 0 < b < c. We will use descent on the denominator c. Squaring both

sides of
√
d = a + b

c and clearing the denominator gives

dc2 = a2c2 + 2abc + b2

This shows that c | b2, say b2 = cn. Then b
c = n

b , and this new fraction n
b has

smaller denominator. So we have a descent. Contradiction2.

Example 3.3. Problem: Prove that if n > 1, n does not divide 2n − 1.

Solution: Suppose there is an integer n > 1 such that n|2n − 1. Then this n
has at least one prime factor p. We will produce a smaller prime factor. This is the
descent, and it gives a contradiction, since we cannot keep producing smaller and
smaller primes!

- So let p |n; then p |n | 2n − 1, so 2n ≡ 1 mod p.
- let k be the order of 2 mod p.
- by def of order, k |n, and also since 2p−1 ≡ 1 mod p, k | p− 1.
- k 6= 1, because the only thing that has order 1 mod p is 1. So there is a prime

factor q of k, which is therefore also a prime factor of n.
- But q < p, because q divides k, which divides p− 1.
- so we have our descent: given a prime factor p of n, we get a prime factor q of

n which is strictly smaller. This is a contradiction.

2Notice that these denominators are positive, which is essential for the contradiction.


