MATH 115, SUMMER 2012
 LECTURE 25

JAMES MCIVOR

1. Fermat's Last Theorem, $n=4$ Case

Recall that one of the most famous problems in number theory (indeed, in all of mathematics!) was Fermat's Last Theorem. The question was whether, for a give value of n, there existed positive integers x, y, z satisfying the equation

$$
x^{n}+y^{n}=z^{n}
$$

Fermat scribbled somewhere that he had a proof that there were NO solutions when $n>2$, but nobody ever found his proof, and it took until the 1990s for mathematicians to prove it!

Today we prove it in the special case $n=4$. Surprisingly, this, and not $n=3$, is the easiest case.

First observe that it follows from the following result:
Theorem 1. The equation

$$
x^{4}+y^{4}=z^{2}
$$

has no solution in positive integers.
For if we had a solution to the Fermat equation $x^{4}+y^{4}=z^{4}$, then replacing z by z^{2} would give a solution to the equation in the theorem.

2. Fermat's "Method of Descent"

This is a brilliant idea: we show that there can be no solution, for if there were, we could always produce another solution with a smaller value of z - this is the "descent". This is a contradiction, because, e.g., we might get to $z=1$, and there is no smaller positive integer.

How do we establish the descent ${ }^{1}$?

- Suppose we have a solution x, y, z to $x^{4}+y^{4}=z^{2}$.
- Then x^{2}, y^{2}, z is a Pythagorean triple.
- we can assume it's primitive, for if some prime p divides all three, then $p \mid x$ and $p \mid y$, so we can divide out the p and get a new triple $\left(\frac{x}{p}\right)^{2},\left(\frac{y}{p}\right)^{2}, \frac{z}{p}$. Continue doing so until they're relatively prime.
- By the results of the last lecture, we can assume x is even and y is odd.
- Also from last lecture, we know there are coprime integers a, b such that

$$
\begin{aligned}
x^{2} & =a^{2}-b^{2} \\
y^{2} & =2 a b \\
z & =a^{2}+b^{2}
\end{aligned}
$$

[^0]- Look at $y^{2}=2 a b$. Since $2 a b$ is a square, and a, b are coprime, one of a, b must be two times an odd square, and the other must be an odd square.
- Now look at the first equation: it says $x^{2}+b^{2}=a^{2}$, and since a, b are coprime, x, y, z form a primitive Pythagorean triple.
- Thus we can find relatively prime r, s such that

$$
\begin{aligned}
x & =r^{2}-s^{2} \\
a & =2 r s \\
b & =r^{2}+s^{2}
\end{aligned}
$$

- we said above that one of a, b was 2 times an odd square, and the other an odd square; now we know that a is even. So $a=2 m^{2}$ and $b=n^{2}$, where m, n are odd.
- now we have

$$
2 m^{2}=a=2 r s, \quad \text { so } \quad m^{2}=r s
$$

-by a lemma from last lecture, since r, s are coprime and their product is a square, they are themselves squares, say $r=u^{2}, s=v^{2}$.

- then

$$
n^{2}=b=r^{2}+s^{2}=u^{4}+v^{4}
$$

- thus from our original solution x, y, z we have produced a new solution u, v, n
- but notice $z=a^{2}+b^{2}=a^{2}+n^{4}$, so $n^{4}=z-a^{2}$, hence $n<z$.
- Thus we have our descent.
- To repeat from above, this is a contradiction because we cannot keep producing smaller and smaller positive integers.
- since given any positive integer solution x, y, z, we get the descent, there cannot be any positive integer solutions at all.

3. Other Examples of Descent

The method of descent is very useful. It's a little bit like mathematical induction, but backwards. It may not be quite as useful as induction, but is still a very useful problem-solving tool. Here are some more applications of this idea:

Example 3.1. Problem: Prove that the equation $x^{3}+2 y^{3}+4 z^{3}=0$ has no solutions in integers except the trivial solution $x=y=z=0$.

Solution: Suppose we have a nontrivial solution x, y, z. We will produce another solution $x^{\prime}, y^{\prime}, z^{\prime}$ with $\left|x^{\prime}\right|<|x|$. Since the absolute value of x cannot decrease forever, this descent will provide a contradiction.

Since $x^{3}+2 y^{3}+4 z^{3}=0, x$ must be even, say $x=2 k$. Then dividing the equation by 2 gives

$$
y^{3}+2 z^{3}+4 k^{3}=0
$$

Now y must be even, say $y=2 m$. Dividing by 2 again gives

$$
z^{3}+2 k^{3}+4 m^{3}=0
$$

so z is even, say $z=2 n$. Dividing by 2 one last time, we get

$$
k^{3}+2 m^{3}+4 n^{3}=0
$$

But $|k|=|x| / 2<|x|$, so we have desecent, giving a contradiction.

Example 3.2. Problem: Show that if d is not a perfect square, then \sqrt{d} is an irrational number.

Solution: Suppose d is rational. Let $a=\lfloor\sqrt{d}\rfloor$, and put $\sqrt{d}=a+\frac{b}{c}$, where $0<\frac{b}{c}<1$, so $0<b<c$. We will use descent on the denominator c. Squaring both sides of $\sqrt{d}=a+\frac{b}{c}$ and clearing the denominator gives

$$
d c^{2}=a^{2} c^{2}+2 a b c+b^{2}
$$

This shows that $c \mid b^{2}$, say $b^{2}=c n$. Then $\frac{b}{c}=\frac{n}{b}$, and this new fraction $\frac{n}{b}$ has smaller denominator. So we have a descent. Contradiction ${ }^{2}$.

Example 3.3. Problem: Prove that if $n>1, n$ does not divide $2^{n}-1$.
Solution: Suppose there is an integer $n>1$ such that $n \mid 2^{n}-1$. Then this n has at least one prime factor p. We will produce a smaller prime factor. This is the descent, and it gives a contradiction, since we cannot keep producing smaller and smaller primes!

- So let $p \mid n$; then $p|n| 2^{n}-1$, so $2^{n} \equiv 1 \bmod p$.
- let k be the order of $2 \bmod \mathrm{p}$.
- by def of order, $k \mid n$, and also since $2^{p-1} \equiv 1 \bmod p, k \mid p-1$.
- $k \neq 1$, because the only thing that has order $1 \bmod p$ is 1 . So there is a prime factor q of k, which is therefore also a prime factor of n.
- But $q<p$, because q divides k, which divides $p-1$.
- so we have our descent: given a prime factor p of n, we get a prime factor q of n which is strictly smaller. This is a contradiction.

[^1]
[^0]: ${ }^{1}$ Note: the following argument is a little different from the one in your book.

[^1]: ${ }^{2}$ Notice that these denominators are positive, which is essential for the contradiction.

