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JAMES MCIVOR

last time:

- given n and d, there is a form if disc d representing n iff 22 = d mod 4|n| has
a solution.

- study QFs by studying matrices: a form f(z,y) = ax? + bxy + cy? can be

written as
_r( a b2
f(‘ray)_x (b/2 c )X

- began to talk about integer matrices. invertible iff determinant is £1.

1. EQUIVALENT FORMS

We will be mostly interested in integer matrices with determinant one. These
get a special name.

Definition 1. The group of 2 x 2 integer matrices with determinant one is called
the modular group', written T.

- Here a group just means a set in which you can multiply, which has an identity
element (the identity matrix), and all elements have inverses.

- we can use the modular group to define precisely when two QF's are “ the same”

- notation: let us write an ordered pair of integers (x,y) as the vector x, and
write f(z,y) as f(x).

- if we multiply the vector x by a matrix A in I', we get a new pair of integers,
which we’ll just write simply as Ax. Then it makes sense to write f(Ax), too.

Definition 2. Let f and g be two binary quadratic forms. We say f and g are
equivalent, written f ~ g, if there is a matrix A € T' such that for all x = (z, y),
we have g(x) = f(Ax)

- relate this to matrix notation: can write a QF f(z,y) as
fla,y) =x"Mx
for some matrix M (which we can take to be symmetric, as we saw last time)
Similarly
g(z,y) = x"Nx
- so in terms of the matrices M and N associated to f and g, we can say f ~ g
if
f(Ax) = (Ax)T M Ax = xT AT M Ax = g(x) = x" Nx
ie., if N =ATMA.

Ht’s also sometimes called SLa(Z).
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Proposition 1. FEquivalence of forms is an equivalence relation on the set of all
binary QFs.

Proof. Sort of boring. Maybe skip. Problem session? O

- as mentioned above, equivalent forms represent the same integers. But they
also properly represent the same integers, which is the nontrivial part of the next
thm:

Theorem 1. If f ~ g, and n is an integer, then

(1) f represents n if and only if g represents n.
(2) f properly represents n if and only if g properly represents n.
(3) f and g have the same discriminant.

Proof. (1) is because, f and ¢ differ by a one-to-one and onto function on the
inputs, and this doesn’t affect the set of outputs.

(3) follows from the formula last time: if f(x,y) = xT Ax, then d = —4det A.

- the only really interesting part of the theorem is (2). To prove this, we show
that changing variables by an element of the modular group does not affect the ged
of the two coordinates.

-ie,if M €T, and x; = (21,y1) and Mx = (22,y2), then ged(z1,y1) =ged(z2, y2).

- for this, let ¢1 =ged(z1,41), and write x = (x1,y1), Mx = (x2,y2). Since
aq1lz1,y1, (x1/91,y1/91) is a lattice point, and so M sends it to a lattice point.

- by linear algebra (matrix multiplication is a linear transformation), we have

M( xl/gl ) :iMX
yl/gl g1

- this means that g; divides both x5 and ys9, so it divides their ged.

- we also can write M ~!(z2,y2) = x and do the same argument, so the ged of
o and yo divides g;.

- thus the two pairs have gcds which divide one another, so the gcds must be the

same.
(]

2. REDUCED FORMS

- since ~ is an equivalence relation, it partitions the set of all QFs into equivalence
classes. It would be convenient if there was one special member of each equivalence
class, that we could work with.

- there is, if we restrict our attention to only certain forms.

- for the rest of this material, we need to avoid forms whose discriminant is
a perfect square - these are called degenerate?, and if the discriminant is not
a perfect square, the form is nondegenerate. FEvery positive definite form is
nondegenerate (negative numbers are not perfect squares).

- things become nicer still if we consider only positive definite forms: for each
equivalence class, there’s only one which has the property of being reduced, defined
below. DRAW JANKY VENN DIAGRAM.

- The definition is bizarre, but turns out to be useful (in the problem session
we'll see a cool geometric interpretation of this condition):

2Remember our exercise from the problem session a few days ago - the discriminant is a perfect
square iff the quadratic form factors into two linear terms
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Definition 3. Let f(x,y) = ax? + bxy + cy? be a positive definite QF. We say f
is reduced if

(1) —la| <b<|a|] < ¢, or

(2) 0<b< |al and |a|] = |

Example 2.1. We will be increasingly interested in forms of the type
fD = £C2 + Dy27

where D is some integer.
- for which D is this positive definite?
- for which D is this form reduced?

- As mentioned above, to make sure we have exactly one reduced form in each
equivalence class, we must restrict our attention to primitive positive definite forms.

- Primitive means the gcd of the coefficients a, b, ¢ of f is 1.

- Then we have the following result, which, as we will see tomorrow, is incredibly
powerful.

- it combines theorems 3.18 and 3.19 and 3.25 in your book.

Theorem 2 (The Reduction Theorem). Let f(z,y) = ax?+bxy+cy? be a primitive
positive definite QF (integral and binary as usual). Then

(1) f is equivalent to a unique reduced form.

(2) ol <a < \/—df3

(3) The number of equivalence classes of positive definite forms of discriminant
d is less than or equal to —2d/3.

- note that for a positive definite form, d < 0, hence the negative signs on all the
d’s

- recall that the equivalence relation ~ doesn’t affect the discriminant, so it
makes sense to speak of “equivalence classes of forms of discriminant d.”

- part 1 without the uniqueness claim is Thm 3.18 in the book. part 2 is Thm
3.19, and part 3 is a stronger version of the final claim in that Thm.

Definition 4. The number of equivalence classes of pos def forms of discriminant
d is called the class number of d, written H,(d). We use the subscript p, which is
different from the book, to indicate we are considering only positive definite forms.

- Thus the third part of the theorem says that H,(d) < —2d/3.

- We will not give a complete proof of the theorem, but work out an example to
convince ourselves that it’s reasonable.

- first we have the following useful fact:

Proposition 2. The modular group is generated by the matrices
0 -1 1 1
=1 ) =)

which means that any matriz in the modular group can be written as a product of
S and T and their inverses.

31f you know some group theory, we can say a little more: T' has the presentation: (S,T|S2? =
(ST)% =1).
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1 k
0 1

- let’s do an example to see that given any positive definite form, we can use the
matrices S and T to find an equivalent reduced form:

- first fix some terminology, let’s call replacing a matrix A by ST AS, conjugat-
ing A by S, and similarly for T'.

- for us, the matrices A will have the form A = ( b72 b£2 >

- to get a feel for how these matrices act, we first compute the action of conju-

gation by S, T, and T~ !:

- note that T% =

-b/2 a

T A a a+b/2
AT = < a+b/2 OL-l—c+b>7

(T~ HT AT = < b/2a_a abfc_—ab >

Example 2.2. Let f(z,y) = 522 + 20xy + 21y2. Find a reduced form equivalent
to f.

Solution: First note in passing that the discriminant of f is 202 —4-5-21 =
—20 < 0, so f is positive definite.

- first write f in matrix form: f(x,y) = x Ax, where

5 10
A(w 21>

- It’s not reduced: b is 20, which is bigger than a =5

- idea: conjugating A by S or T in the appropriate order will eventually produce
a reduced form:

- ALGORITHM:

(1) If ¢ < a, conjugate by S.
(2) If |b| > a, conjugate by T*, where k is the greatest integer less than or
equal to %2 ie., k= [%2].

- Note: the first step reduces the value of a, while the second reduces the value of
|b], so this gives you a hint that the process should terminate after a finite number
of steps.

- CAUTION: remember that when we write the matrix for a QF, the upper right
/ bottom left entry is b/2, not b, so be sure to double it before checking which step
to apply next.

Let’s apply the algorithm to A above. Here 20 = |[b] > a = 5, so we do step 2.
k= |=2] = —2, so we conjugate by T2, giving

(5 7)

Here 1 = ¢ < a = 5, so we apply step 1, conjugating by .S, which gives

(03)

This is reduced - indeed, it is our old friend f5(x,y) = 22 + 5y?!
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- so maybe this convinces you that we can always reduce a pos def form to a
reduced one.

- then we also have to check that there is only one reduced form in each equiv-
alence class - this is Theorem 3.25 in your book. The proof is rather long, and we
may skip it entirely, or sketch it tomorrow.



