MATH 115, SUMMER 2012
 LECTURE 17

JAMES MCIVOR

Today we begin studying quadratic forms, which is a vast and interesting subject of its own, but we will only get a brief glimpse of it over the next week or so.

1. Quadratic Forms

- motivation - we figured out weeks ago which integers can be written as sums of squares
- think of that problem this way: let $f(x, y)=x^{2}+y^{2}$. What are the outputs (range) of this function f, as x and y range over all integers?
- question: if we replacve f above by some other quadratic function of two variables, how does the answer change?
- for example, if $f(x, y)=2 x^{2}-y^{2}$, what are the outputs of f ?

Definition 1. A form (also called a homogeneous polynomial) in n variables is a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ in which every term has the same degree. In general, the coefficients may be integers, rational numbers, real numbers, etc., but for us, they will usually be integers unless stated otherwise.

A quadratic form is a form of degree two. Binary means the form has two variables, ternary means it has three, etc.
Examples 1.1. $-f(x, y)=x^{2}+y^{2}$ is a binary quadratic form, but $f(x, y)=$ $x^{2}+y^{2}-1$ is not.

- $f(x, y, z)=x^{2}-y^{2}-z^{2}$ is a ternary quadratic form, whereas $f(x, y, z)=$ $x^{3}+x y z+x y z^{2}$ is not a form at all.

To relate this notion to the "sums of squares" problem:
Definition 2. If n is any integer, and $f\left(x_{1}, \ldots, x_{n}\right)$ is a quadratic form, we say f represents n if there are integers a_{1}, \ldots, a_{n} such that $f\left(a_{1}, \ldots, a_{n}\right)=n$. We say f properly represents n if the gcd of the a_{i} is 1 .

Note - If f represents n, but not properly, then gcd of the a_{i} is some $g>1$, and dividing through by g gives: f represents n / g^{2} properly. So it's enough to consider proper representations.

- main question: given a form f, which integers does it represent?
- for now focus on binary quadratic forms:
- much of this can be found by looking at the discriminant:

2. Discriminants

Definition 3. Let $f(x, y)=a x^{2}+b x y+c y^{2}$ be a binary quadratic form. The discriminant of f is $d=b^{2}-4 a c$.

- the discriminant can tell us when f has nontrivial zeroes:

Theorem 1. Let f, d be as in above definition. If d is nonzero and not a perfect square, then the only solution of $f(x, y)=0$ is $x=y=0$.

Proof. - note that if a or c is zero, then $d=b^{2}$, contradicting our assumption that d is not a square. So they're both nonzero.

- If either of x or y is zero, then so is the other.
- assume there is a point $(x, y) \neq(0,0)$ with $f(x, y)=(0,0)$. We look for a contradiction.
- key formula:

$$
4 a f(x, y)=(2 a x+b y)^{2}-d y^{2}
$$

- set equal to zero, and get d is a perfect square. Contradiction.

3. Definiteness

The first thing we can ask about a form is whether its outputs are always positive, always negative, or both.

Definition 4. The form $f(x, y)$ is indefinite if it has both positive and negative outputs. It's positive semidefinite is all its outputs are ≥ 0. It's positive definite if all its outputs are strictly greater than 0 . Define negative (semi-)definite similarly.

Good news: the discriminant can tell us whether a form is definite or not.
Theorem 2. Let f be a binary quadratic form with discriminant d.
(1) If $d>0$ the f is indefinite.
(2) If $d=0$ then f is semidefinite, but not definite.
(3) If $d<0$, then the coefficients a and c have the same sign, and f is positive definite if they're both positive and negative definite if they're both negative.

Proof. Boring - see book. Deal with three cases separately and be clever with the "key formula" from the last proof.

Which integers d can be discriminants of some form? The answer is actually easy:

Proposition 1. There is a form having discriminant d if and only if d is congruent to 0 or $1 \bmod 4$.

Proof. - assume there is a form with discriminant d. Then the integer d can be written as $b^{2}-4 a c \equiv b^{2} \bmod 4$. But squares mod 4 are always 0 or 1 .

- other way: suppose d is congruent to 0 , say $d=4 k$. Set $f=x^{2}-k y^{2}$. it has discriminant $4 k$
- now suppose $d \equiv 1 \bmod 4$, say $d=4 k+1$. Set $f=x^{2}+x y-k y^{2}$ it has disc d.

4. Lattices

To introduce some of the ideas of linear algebra, think of forms in the following way:

Let

$$
\mathbb{Z}^{2}=\{(a, b) \mid a, b \in Z\}
$$

- It's a subset of \mathbb{R}^{2} (draw picture)
- We think of a binary form as a function from $\mathbb{Z}^{2} \rightarrow \mathbb{Z}$
- Can regard two integers x, y as a vector $\mathbf{x}=(x, y)$. Draw it.
- Consider the expression:

$$
\mathbf{x}^{T} A \mathbf{x}=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}
$$

- expand it: get $a x^{2}+b x y+c x y+d y^{2}$. This is a quadratic form.
- other way, given $a x^{2}+b x y+c y^{2}$, can write it using a matrix

$$
A=\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)
$$

Notice it's symmetric $\left(A=A^{T}\right)$

- so can interchange the two:
binary quadratic forms $\leftrightarrow \quad$ symmetric 2×2 integer matrices
- now check that if d is defined as above, then $d=-4 \operatorname{det} A$.
- use this to prove part (2) of previous theorem on discriminants and definiteness.
\qquad
- For each form, find the discriminant and say whether it's indefinite/pos/neg semidefinite, or pos/neg definite:
(1) $f(x, y)=2 x^{2}-x y$
(2) $f(x, y)=x^{2}+3 x y+y^{2}$.
(3) $f(x, y)=x^{2}-2 x y+y^{2}$
- For which of the values $d=-1,0,1$ is there a quadratic form having that discriminant? Write down an explicit form in each case.
- If a form factors as $f(x, y)=(\alpha x+\beta y)(\gamma x+\delta y)$, show that it must be semidefinite. Show further that the discriminant of such a form must be a perfect square (maybe 0).
- Prove that a polynomial $f(x, y)$ is homogeneous (of degree d) if and only if $f(\lambda x, \lambda y)=\lambda^{d} f(x, y)$.

